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Amsterdam-Paris-Stockholm dark matter
meeting used to be called APS but tomorrow
it's getting a SLAP from London (and | made
the train too)
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It’s very nice to be here,

Thank you for the invitation and the organisation.

w Tweet your reply

Michael Merrifield @Pro™ike_M - 12h
5 Replying to @malcfairbairn

You aren't all PALS together?
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Bradley Kavanagh @EBradleyKavanagh - 12h
Replying to @malcfairbairn

Did we settle on "SLAP"? I'm not sure we settled on "SLAP".
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* Axion phenomenology lightning introduction

* Probing QCD axion with microlensing
* (if time) Ultra Light Axions

o_o °
« *0g000004°

& Science & Technology RN RX X
@ Facilities Council ::,:;OQ rc

9999999
00000000
°°°°°°




Axion Phenomenology Lightning Introduction

& Science & Technology I
@ Facilities Council ::.:.erc




Axions as Dark Matter What is this? Leads to CP violation (neutron EDM)
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Axions as Dark Matter What is this? Leads to CP violation (neutron EDM)
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Phenomenological consequences:-
coupling to photons
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Consider axion production in
magnetic field of nucleon in sun
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Lagrangian and mixing
1 9 ~ 1

1 , _
L = 5( 00, — m2 ) T F,, F" — EFM-L—*FW
can linearise solutions when refractive index close to unity
A,
iU =—(w+ M)W : o= A4 ’
(1
AN Y
AP O ‘A.\Il
mixing matrix- M = 0 A, Ay A,
Armz Army D
AW



Energy [keV]

o

]

122.1

97.7

73.3

48.9

24 4

0.0
1.0 o

0.5_7
0.0

/d

dl

0.00 0.05

0.10 0.15
Radius

0.20 0.25

0.30

Search for Solar axions
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look for axions
produced in the sun
and turn them back into
photons down here



CAST: cern-axion-solar-telescope
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Horizontal Branch Stars




Horizontal Branch Stars

Helium burning in core leads to huge central luminosity —
temperature gradient is saturated — convective core.

Apparent magmitude (V)
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Presence of axion could
easily allow energy to escape
from this central region



Vacuum Resonant mixing in periodic field
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ADMX - Axion Dark Matter Experiment PRD 69-11101(2004)




Possible Hints for anomalous Transparency of Universe? Might be due to Axions.
Controversial.

VHE : E 2 100 GeV

See Work by Horns and Meyer and more recently Troitsky et al. Pictures are from Ringwald.
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Probing QCD Axion with microlensing
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Here you can get good dark matter, but
generically you get too many isocurvature
perturbations if PQ symmetry was broken
before inflation (although see Hogan,
Fairbairn and Marsh and Ballesteros et al
for ways around this.)
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10° Tuning required to fix this worse than
strong CP problem in first place (Mack
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Can also get good relic abundance if PQ

KV symmetry broken after inflation.

Too many events
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What Happens Step by Step

. PQ phase transition after inflation — lots of different values in different
regions

. Field smooths itself out on horizon scale in the style of Kibble Mechanism
. Axion acquires a mass, leading to big over-densities from place to place

. Field now collapses to form (very) dense miniclusters with typical mass
equal to that inside horizon

. All of these isocurvature perturbations physics occurs on very small scales,
on large scales they fall into adiabatic perturbations

. We then try to observe the small scale miniclusters today with lensing



U(1) PQ symmetry broken by axion mass after inflation

Relic abundance then set by different value of the axion field in different regions of the Universe

Generic answer (from particle data group) is given by

41 peV
ma

1.19

Orelp? ~0.11

On its own suggests that the axion mass is about 40 micro-eV but there is a range over perhaps
a couple of orders of magnitude because the contribution from the decay of topological defects
Is uncertain.

Correlations in this field are on length scale of horizon at phase transition — very small- much
smaller than cosmological Planck/galaxy scales etc.



U(1) PQ symmetry broken by axion mass after inflation

4 T 3 Mass inside horizon = M,
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Simulations: Kolb & Tkachev (1990s)

See also Zurek et al (2007); Hardy (2016)
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Fraction of MCs with density
Minicluster formation simulated o: 3 3
without gravity or phase pe = 14007 (1 + ) pa (1l + 2eq)
transition.
The fraction of DM in miniclusters, f,,:, is not predicted.
Our goal: constrain f,,. observationally.




source lens observer
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Subaru Hyper Suprime Cam (HSC) —

1.5 degree coverage on sky, can cover whole of :
Andromeda Galaxy (M31) ’ o L e — . '

Blue patches excluded due to too many objects

=

D1 representative of inner disk

batch-T}2
D2 outer disk .
H halo

e patch—H

pat ch—]: '

Niikura et al, 1701.02151




Subaru Hyper Suprime Cam (HSC)

Has only collected 7 hours of data — already has very strong constraints on lensing events

Good stacked image representative target image difference — change in one star’s flux



HSC constraint on Primordial Black Holes Niikura et al, 1701.02151
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10°
Our Results
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Nexp
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Only small fraction
can be miniclusters —
depends on mass

QCD Axion
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Upcoming Surveys -
many of which plan much more exposure than HSC

| ]
HSC, | |
1.7 deg?
& 0 _ﬁ PS1, 7 deg?
DES, HTHA
2.5 deg? .
PTF/iPTF, 7.3 deg? ZTF, 47 deg? LSST, 9.6 deg?

——+——1 deg



What do we need to know to further exploit this discovery channel?

What fraction of the axion dark matter ends up in miniclusters?

What is the expected distribution of over-densities for the halos?

Is the minicluster-axion mass relation we assume correct?

What is the subsequent evolution of the halos (tidal disruption? Friction?)

What is the precise density profile of the halos (shouldn’t be too critical)



Conclusions on QCD Axion Microlensing

Gravitational Microlensing seems to be about to experience a renaissance
Microlensing is a promising discovery channel for axion miniclusters
With assumptions we have made, QCD axion can be searched for in this channel

Those assumptions need to be checked, re-investigated and updated!
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New Probes of Ultra Light Axions
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Cusps vs. Cores — would like to know
y(x)
Ill".';‘-..h&
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Burkert

[sothermal
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N-body simulations predict cuspy profiles like NFW.
Exotic models (Self interacting DM and ULA) predict cores.
Milky Way no good for this, central region baryon dominated.
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Dwarf Spheroidal Galaxies have HUGE mass to light ratios
baryons are therefore only tracers of potential
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How do you work out how much
DM in Dwarf Spheroidals?

Use the Jeans equation and the line of sight stellar dispersion

Cannot observe this Hope FO obtain this
directly for stars so by fitting data

free parameter \ /
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M(r) [Mo]

S degeneracy problem — could be a cusp, could be a core!
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M(r) [Me]

t Carina
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3D Physical Radius [kpc]

3D Physical Radius [kpc]

Plots from Wolf et al 0908.2995

Only really sure of the enclosed mass at the half light radius.
Maybe this is enough for J-factors....



M(r) [Mo]

S degeneracy problem — could be a cusp, could be a core!
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this focusing effect is used
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Only really sure of the enclosed mass at the half light radius.
Maybe this is enough for J-factors....
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Example of core detection:-
Walker and Penarrubia Method

Split population into two using metallicity and then
look for radius at which enclosed mass degeneracy shrinks :-

two different radii, two different masses, can infer density profile.
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The core - cusp problem:
a matter of perspective

Anna Genina, Bentez-
Llambay, Frenk, Cole,
Fattahi, Navarro, Oman,
Sawala, Theuns

Based on 53 dwarf galaxies in the
APOSTLE LCDM cosmological
hydrodynamics simulations of
analogues of the Local Group.
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Axion dark matter, solitons, and the cusp-core problem

: ' AN Marahl 2
David J. E. Marsh™ and Ana-Roxana Pop~7
L Perimeter Institute, 31 Caroline St N, Waterloo, ON, N2L 6B9, Canada
2 Department of Physics, Princeton University, Princeton, NJ 08544, USA

Ultra-light axions give rise to cored density
profiles in smaller galaxies

May explain some of the cores...

Would result in slowly oscillating axion field.

lng(U?/km? 57?)

log (P/ pt:rit)

3.5
3.0

= O = R W T ] D

o
o

Fornax

Sculptor

logyo(r /kpe)

05 —01 03 0.7-00 —05 —01 03 07

logy,(r/kpc)

—21.75

—22.00

—23.00



Axions as Dark Matter What is this? Leads to CP violation (neutron EDM)
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How to measure the nEDM
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Measure a change in the transition frequency in
a presence of an electric field.
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Michat Rawlik, PATRAS 2017 workshop | 18.05.2017 | 12



Run-base analysis - ILL data

Work of Nicholas Ayres, University of Sussex, UK

We get an d,, estimate every 1-73 hours.

TInE
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False-Alarm Thresholds

10°

10°}

Amplitude (¥*107-26 e cm)

10 107 10 107 10 10°
Oscillation Frequency (days™-1)

y nsu;:ﬁ-‘ Michat Rawlik, PATRAS 2017 workshop | 18.05.2017 |



Limits

oscillation frequency (Hz)0
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Conclusions on Ultra Light Axions

Many particle models are created to solve the “core problem” of dwarf
spheroidals.

Unfortunately it is not clear that such a problem exists. Many techniques are
being developed to find out if this is true or not.

If true, may be due to ultra light axions.

New methods to test regime of ultra light axions are being developed.
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Dark Matter Searches are no place for Dogma.

Could be WIMPs, sterile neutrinos, axions, hidden sector glueballs, KK
particles, whatever....

Whenever we come up with an idea to test one of these we should do
so. There will be lots of new ways to test these scenarios in the
coming Years...
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Stellar
flare?

Eclipsing

Binary?

Subaru Hyper Suprime Cam (HSC)
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Magnification in the point mass vs. the extended mass case

Most haloes are very diffuse and therefore cause no lensing

Magnification for a distributed source
p=[1-B)(1+B-0C)"

1 dM(r) B M(r) ¢*Dg

C J— N EC p—
Y.mr  dr Y.mre ArGDi1r Drg

We have distributed density which, while dense, is not a point mass.
For each halo we need to integrate inwards to find value of r where 1=1.34.

In practise the corresponds to outer image having magnification of 1.17.



Effective diameter / Einstein diameter

Most haloes are very diffuse
and therefore do not cause
enough lensing
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Theia: Faint objects in motion or the new astrometry frontier

The Theia Collaboration *

July 6, 2017
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