Gaussian
Processes

Sebastian Liem
@sebastianliem

APLS 2017, Kasteel Woerden




Global Analysis - Statistical Inference

1. Pick point 8 in model M
2. Predicty=1(0) +¢ SLOW for the LHC!
3. CompareywithdataD

Repeat (cleverly) until we understand
the impact of D on M.



Eliminating Bottlenecks with Machine Learning

Problem: If calculating predictions is expensive,
inference becomes prohibitive.

E.g. Predicting signal events at the LHC. NS — LO‘E

Solution: Replace expensive calculation with a
cheap surrogate function.

Use to construct this surrogate.



Why Gaussian Processes?

Non-parametric: No need to assume a functional form.
I Probabilistic: Produces posteriors, i.e. estimates error.

Bayesian: Can specify prior on the type of functions.



What are Gaussian Processes?

Definition: A collection of random variables where any finite
number of which have a joint Gaussian distribution.

The random variables represent the function value f(6) at
location 6.

f(6) ~ GP(m(0),k(6,6"))

Given some observations y = f(0) + € at O (training data) we

p(f(0") |0, y,0)

using normal Bayesian inference with Bayes’ Theorem etc.




1D example

1
Play at home! k(x,z') = Aexp [——(a: - a:')2] + Bé(xz — 7')

Online demo, http://www.tmpl.fi/gp/

[

https://www.youtube.com/watch?v=zTkdi-DVrXM


http://www.youtube.com/watch?v=zTkdi-DVrXM
http://www.tmpl.fi/gp/

Natural SUSY (6 parameters)
18k training examples

Predicing the efficiency
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Simplified Model: Axial Vector Mediator
ATLAS Monojet signal regions
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Too many plots...

10D = 50
1000 = 2%



Current direction: Systematization

Systematize and semi-automate! Many things to accelerate.
Clever generation of the training data. Active learning.
Automate picking the best kernel structure. (arXiv:1302.4922)

(There is also interesting developments in how to train Bayesian
Neural Networks.)



Additional slides
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each

input value .

“Gaussian Processes for Machine Learning”

Rasmussen & Williams, 2006
WWW.gaussianprocess.org
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Distributed
Gaussian
Processes

The standard Gaussian process
scales badly with N the size of the
training dataset. It involves
inverting NxN matrices.

We use distributed Gaussian
processes to avoid this. The data
is randomly partitioned and on
each partition a Gaussian process
is defined. Predictions from each
process is then combined.

(a) 1-layer model. (b) 2-layer model. (c) 3-layer model.

Figure 1. Computational graphs of hierarchical PoE models. Main computations are at the leaf nodes (GP experts, black). All other
nodes recombine computations from their direct children. The top node (blue) computes the overall prediction.

“Distributed Gaussian Processes”
Deisenroth & Ng, arXiv:1502.02843

TensorFlow-based implementation:
https://github.com/ICL-SML/gptf
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INPUT:
Natural SUSY

Natural because it stabilizes the
electroweak scale without fine-tuning.

Only few SUSY states needs to be light.
0 = {tanﬁ, Hos M?n m@ta mfRa At}
Low-dimensional yet realistic theory.

We already had the training data from
previous paper.
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natural SUSY decoupled SUSY

FIG. 1. The minimal natural SUSY mass spectrum on
the left while the remaining supersymmetric particles are
decoupled on the right.

“Natural SUSY: Now or Never?” Kim et al. arXiv:1606.06738
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OUTPUT: Two Signal Regions

Defined in ATLAS-PHYS-PUB-2013-011
Looking direct stop production with HL-LHC, 14 TeV with 3000 fb™!

Stops decay typically to top or b quarks, W/Z or Higgs bosons, and a LSP.
Multiple jets, b-jets, large MET, possibly leptons.

1-lepton O-lepton
MET > 750 GeV MET > 800 GeV
m_(lepton, MET) > 550 GeV m_(b-jet, MET) > 400 GeV

Total bkg: 21.1+5.9 Total bkg: 12.2 + 3.9

14



Training the Gaussian Processes

18647 models splitinto 16647 Models uniformly sampled from
models for training and 2000 models these ranges:
for testing.

0.1TeV < |u| <1.0TeV,
0.1TeV < meg, < 2.0TeV,
0.1TeV < mi, < 2.0 TeV,
0.1TeV < |M3]| < 3.0TeV,
|A¢| <3.0TeV,

1 <tan < 20.

O(10 min) to train per signal region.

The lunchis not free, just cheaper!

SPheno, Pythia, NLLFAST,
CheckMATE, Delphes etc. still

o All models avoid LEP-II chargino
needed to generate training data.

limit, and have reasonable Higgs
boson mass.
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Probability density
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Natural SUSY, mock signal at HL-LHC.
Stop production, O-lepton and 1-lepton SR

I Prior

] [TeV]

Mean value

True value

O 4
ng [TGV]

MultiNEST ~109%k likelihood eval

Simple example, 3D only.
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Global analysis -

Model M with parameters 6

Statistical Inference

Compute predictiony = f(8) + € Compare with data D

Examples of M:
SUSY models
Simplified Model

dim 6 ~ 4-15

Sample (cleverly) until we understand

the impact of D on 6.

Examples of y: Write down the
Signal eventsinabin likelihood.
Relic density

Many different
sources of datain
dark matter, we do
global analysis.
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