Non-linear acceleration at supernova remnant shocks and the hardening in the cosmic ray spectrum

- S. Recchia
 - S. Gabici

APC-Univerity Paris 7

Amsterdam-Paris-Stockholm 7th Meeting 11 October 2017 - 13 October 2017

Observed spectral hardening in the p and He spectra

NLDSA revisited

- dispersion in the spectral slope of cosmic rays
- steeper spectra corresponding to larger acceleration efficiencies

Cosmic ray spectral hardening

...data

- Proton and He spectra (and heavier)
- $\sim 200 300 \text{ GeV}$
- $\Delta \gamma \sim 0.1 0.2$
- ATIC-2, PAMELA, CREAM, AMS-02

...possible explanations

- break in the CR diffusion coefficient
- the effect of a nearby source
- NLDSA: concavity and reverse shocks
- distinct populations of CR sources

Cosmic ray acceleration

efficient magnetic field amplification detected in several SNRs

necessary for acceleration of CRs to the knee

observation of γ -rays in SNRs

- large dispersion in the slope of CRs in SNRs
- steep CR spectra $\propto E^{-2.1} E^{-2.5}$

in contrast with standard predictions of NLDSA

- test particle DSA predicts $\propto E^{-2}$
- CR pressure generate precursor in the upstream region
- ullet concave spectra, hard ($\propto E^{-1.5}$) above few GeV
- large acceleration efficiencies

NLDSA revisited

Caprioli (2012)

- NLDSA
- + B amplification by CR streaming instability
- + B in the jump condition at the shock
- + velocity of Alfvèn waves (computed in amplified B)

...found

- B amplification self-regulating mechanism
- maximum $\xi_{CR} \approx 30\%$
- compression factor close to 4 (test particle limit of DSA)
- spectra close to power laws
- spectral slope $\sim 2.1 2.6$
- steeper spectrum at larger ξ_{CR}

NLDSA revisited: simple calculation

- ξ_{CR} input parameter $\sim 0.03 0.3$
- ullet small shock modification neglected ($\xi_{CR}\lesssim30\%$)
- power law spectrum
- amplified B by CR streaming instability

compression factor $R = u_1/u_2$

$$\frac{M_1^2}{2} \frac{\frac{\gamma+1}{R} - (\gamma-1)}{1 + \Lambda_B} \approx 1$$

B amplification $M_{A1} = u_1/v_{A1}$

$$M_A^2 = \frac{4}{25} \frac{\left[1 - (1 - \xi_{CR})^{\frac{5}{4}}\right]^2}{(1 - \xi_{CR})^{\frac{3}{4}}}$$

compression factor $+ v_A$

$$R_{eff} = \frac{u1 - v_{A1}}{u2} + R\left(1 - \frac{1}{M_A}\right)$$

$$egin{aligned} \Lambda_B &= W \left[1 + R \left(rac{2}{\gamma} - 1
ight)
ight] \ W &= rac{\gamma}{2} rac{M_1^2}{M_A^2} \end{aligned}$$

Results: $\gamma(\xi_{CR})$

$$\gamma_{\mathit{CR}} = \frac{3R_{\mathit{eff}}}{R_{\mathit{eff}}-1}$$

S. Recchia

Results: comparison with data

- diffusive propagation $D(R) = D_0 (R/GV)^{\delta}$
- + spallation for He
- ullet spectral slope of accelerated particles depends on $\xi_{\it CR}$
- case with ξ_{CR} flat distributed in $\sim 0.03-0.3$
- case with two populations of sources with $\xi_{CR}=3\%$ and 30%

Results: comparison with data

$$\begin{split} \delta \sim 0.4 & D_0 \sim 8 \times 10^{28} \mathrm{cm^2/s} \\ H \sim 4 \,\mathrm{kpc} & \text{grammage} \sim 10 - 12 \;\mathrm{g/cm^2} \;\text{at} \; 10 \;\text{GeV/n} \end{split}$$

Conclusions

- Revisited NLDSA
- dispersion in the CR acceleration efficiency and spectral slope
- steeper spectra correspond larger efficiencies
- ullet CR spectra at the sources in agreement with $\gamma-{\rm ray}$ data in SNRs
- spectral hardening in the proton and helium spectrum can be naturally accounted for