Neutrinos from cosmic ray interactions in the Sun

Carl Niblaeus

astro-ph/1704.02892 with Joakim Edsjö^a, Jessica Elevant^a, Rikard Enberg^b ^aStockholm University & OKC, ^bUppsala University

Increasing sensitivity in solar WIMP searches requires more accurate background modelling

We calculate the SAv flux at Earth and study impact on solar WIMP searches

The SAv flux is quite small (2-3 events/year) but can be a tricky background in solar WIMP searches since it is in the same energy range

We have calculated the SAv flux at Earth with MCEq & WimpSim

We predict a few events per year from the SAv flux

Interactions in Sun damp flux at $E_v > 1$ TeV, oscillations change flavour ratio and cause wiggles

$$\int A_{\rm eff}(E) \frac{d\Phi}{dE}(E) \ dE$$
 \Rightarrow 2-3 events/year A_{eff} from IceCube [1612.05949]

The SAv flux can be tricky do distinguish from WIMP-induced neutrinos

The neutrino-induced muon flux:

Energy spectra are different (power-law vs bump) but energy estimate for muons is poor at these energies

IC ang. resolution:

6° for
$$E_v$$
=100 GeV
2° for E_v =1000 GeV

Review

Neutrino telescopes look for a neutrino flux from DM annihilations in the Sun

SAv, created by cosmic ray interactions in the Sun is a background that is currently neglected

We have calculated the SAv flux at Earth

It can be tough to distinguish a dark matter signal from the SAv

We have calculated the flux of solar atmospheric neutrinos and studied the effect on dark matter searches

astro-ph/1704.02892

Future prospects:

More detailed studies of detection possibilities Refined modeling of e.g. magnetic fields

Extra

SAv dominate below this sensitivity floor for the WIMP-proton cross section

We adjust $\sigma_{\chi p}^{SD}$ for each m_{χ} to get $N_{evt}(WIMP ann.) = N_{evt}(SAv)$

NBPR: astro-ph/1703.10280 FJAWs v2: astro-ph/1703.07798

The SAv flux can be larger than the Earth atmospheric near the Sun

Solar radius: 0.26°

Smeared by:

- (i) neutrino-muon scattering angle
- ii) multiple Coulomb scattering
- (iii) angular resolution

Systematics on production fluxes from Argüelles et al., astro-ph/1703.07798

Final effect: factor≈2

Magnetic field neglected

Fluxes for all flavours

The event rate is dominated by neutrino energies around 200 GeV

$$\frac{dR}{dE} = A_{\text{eff}}(E) \frac{d\Phi}{dE}$$

IC 3y analysis, astro-ph/1612.05949

Effective area drops faster than flux increases as energy is lowered

WimpSim code layout

We have varied density profile, CR flux model and neutrino mass hierarchy

Mass hierarchy affects matter oscillations and best-fit values of oscillation parameters

Resulting flux differences are rather small

Mass hierarchy

Matter oscillation effects (MSW) are small

Standard

No MSW effect