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e What is the maximum information that can be in principle extracted from a
given observation?
e Information gain here corresponds to the reduction of the uncertainty
associated to the model parameters of interest
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Equivalent Counts Method
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Poisson Likelihoods and Model definitions

Poisson Likelihood is used when considering counting experiments such as the
gamma-ray satellite Fermi
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What is the Fisher Information Matrix

1.(6) = <<8ln§0(33|9)> (alnge(fe)»m) _ _<a2 ?ef§;j|9)>p(9)

e The Fisher Information is a description of the curvature of the likelihood
e Curvature of the likelihood surface gives us a description of the variance

e The Cramér-Rao bound is based on the Fisher information matrix, which
quantifies how ‘sharply peaked’ the likelihood function describing the
observational data is around its maximum value

A AN

cov {éz-,éj} = ((0; — 0,)(0; — 0,))p(o) > (Z(0) 1)

e Bound is ‘asymptotically efficient’ when the bound is saturated in the
large sample limit
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Equivalent Counts Method

Logic:
e Signal to Noise of events in a single bin 92
example tells us about the significance S; (9) - L 5
of the signal O, (‘9> — O (‘90)
e Extend same technique to multi-bin
case
e Not all signal events statistically QZ,Q 0@2 (6o)
contribute if they are drowned out by bi (9) — ( 9 (9) 9 (9 ))2
large backgrounds o 9;\Y0
e Convenient to define significant signal
and background events using the FIM
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Indirect DM Search - CTA Projections
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e Treat the FIM as a metric and use this to plot constant geodesic ellipses. The
size and shape of the ellipses show how far in the parameter space we need to
travel to rule out parameter space
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Strategy Optimisation

e |t is possible to include an additional term to the likelihood that describes
background correlated systematics. In addition we can look how the information
is distributed over you binned variable, we call this object the Effective Fisher
information flux
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Thanks for listening!

https:/arxiv.org/abs/1704.05458
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What do people normally do...

e There are many methods both for calculating your expected sensitivity and
expected signhal. Most prominent is the use of Monte Carlo Simulations

Start with basic Physics

|

Create Model

l Bottle neck of the
Sample from Model using analysis. Often takes a
Monte Carlo methods — long time with little

l flexibility

Calculate limits off mock data
and repeat simulations to check
validity
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Limit and Reach

Exclusion Limits

e Solve for 9,V to calculate the

51(09) = Z(a) - \[51(07) + b1 (67)

exclusion limit

o i . .
where 0V = (0V 0y, ....0,)" a is the statistical significance

e Z(u) is connected to the

desired confidence limit

Discovery Reach inverse of the standard

| cumulative
51(6P) + by (6P norma
(51(67) +b1(67)) In ( 1{ b)(é’D;( )) distribution e.g. for CL=95%,
R Z(0.05)=1.64
—S1 (QD ) = (;) e Solve for 0,D to calculate the
discovery reach
where 9P = (9P 6,,...,0,)"
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Useful properties of the Formalism

Properties:
e Multiplicativity of Poisson Likelihoods
—> Additive Fisher Information

TLrot = L1+ 2o + ...

e Easily reduced 1 = La Ig Ta=Ts—ILT1T
IC IB A A C +B C

e Simple to map to standard Dark matter
searches - Direct, Indirect, Collider etc.
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Comparison with Monte Carlo
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Non-locality and Saturation

e The resulting Fisher Information
Flux is non-local in space due to
the appearance of the full FIM
occurring in the Effective
Information Flux

e With non-locality, we mean that
the information flux at E depends
in general on the past
observation history of E'/=E

e The differential information flux
accounts for the fact that the
broad feature becomes
increasingly degenerate with the
flat background at late times but
the sharp peak remains useful
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Systematics r
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e In many cases of practical importance, = \'\\,\ "'| T ek
additional information about nuisance & - ~J|
parameters is available, which must be £ K ) NG
included in the sensitivity projections to ;E N
obtain realistic results 210 i:li ™~
] I
L(DIY) = LDIO)poss x [[N O n=00* =) el & |
1

10' 5

_ __ gpois syst
I@J o I’ij + Iij

e In general, systematic uncertainties in
the background will be correlated as a
function of energy

{ === Fisher information, &5 = 0.01
| =—— Fisher information, £&5 = 1.0

e Can encode the complicated covariances
by inserting a Gaussian random field

..... Fisher information, &3 = 5.0

Projected 95% CL upper limit, AV
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