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Electroweak multiplet dark matter

Electroweak multiplets appear in several places
= The wino limit of the MSSM (effectively SM + triplet), M ~ 3 TeV

= Minimal dark matter
= SM + fermionic SU(2). quintuplet, M ~ 9 TeV

= Vector dark matter, an SU(2), vector multiplet, M ~ TeV



Electroweak mass splittings

Extend the SM by an electroweak multiplet, x = (x 7, X%, x")
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= Degenerate mass parameter — M ~ O(TeV)

= Simple one-loop radiative corrections
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= results a slightly heavier x*



The electroweak multiplet self ener

= The resultant difference has a finite limit
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= Essential to be # 0, exact value important for collider constraints



A potential pitfall

= Set up your multiplet model in a spectrum generator
= In FlexibleSUSY you can choose pole mass calculated with:
= High precision
= Medium precision
= Low precision
= For your study, only "High precision" will do!
= You pass the spectrum onto other routines and assume your getting
the best result
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High precision?!

» The pole mass is the pole of the two point propagator, p such that

p—M+k(p?)p+Tm(p?) =0

= High precision The iterative pole mass

Mpole - AA/I - ZM(MI% ) - MpoleZK(M2 )

ole pole

= Low precision The explicit pole mass

Mpoie = M — 0 (02) — M =D (112) + 0 (a?)



The one-loop pole masses
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The iterative uncertainty
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Does this even matter?
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So what is goi
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= Pole masses have scale
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dependent logarithms of the
form log(m/ Q)

= These result in erroneously large

corrections to M. When there
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is a large hierarchy of scales
— r = /\/Ipolc//\A/l7é 1
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One-loop self-energy functions are extremely sensitive to r for
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what is going on?
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Considering higher-order corrections
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So do we need to consider this uncertainty?

No — but only after this thorough investigation are we confident that this
uncertainty comes from unphysical scale dependent terms.

This is reaffirmed by the fact that a finite mass splitting is predicated

classically by the a simple coulomb energy argument.
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= Don’t compute mass splitting using an iterative pole mass!

= check out arXiv:1710.01511 for more details
= Look out for upcoming two-loop mass splitting results

= New tool will eventually be available for automating the final step in
the chain of two-loop self-energy calculations
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