A novel LHC dark matter search to test the Galactic Centre Excess arXiv:1705.09670

<u>Patrick Tunney</u>, Jose Miguel No & Malcolm Fairbairn (King's College London)

October 2017

SLAP meeting

Overview

- · Simplified models of Dark Matter (DM).
- Gauge-invariant extension of pseudoscalar mediated models, featuring a Two Higgs Doublet Model (2HDM).
- A new LHC search to test parameter space that explains the Galactic Centre Excess (GCE).

Pseudoscalar Simplified Model

$$\mathcal{L} = \frac{m_{a_0}^2}{2} a_0^2 + m_{\chi} \bar{\chi} \chi + y_{\chi} a_0 \bar{\chi} i \gamma^5 \chi + \sum_q y_q a_0 \bar{q} i \gamma^5 q$$

 χ is DM, a_0 the pseudoscalar and y_q are the standard model yukawa couplings.

Final term does not respect $SU(2)_L \times U(1)_Y$ gauge invariance.

Pseudoscalar Simplified Model

$$\mathcal{L} = \frac{m_{a_0}^2}{2} a_0^2 + m_{\chi} \bar{\chi} \chi + y_{\chi} a_0 \bar{\chi} i \gamma^5 \chi + \sum_{q} y_{q} a_0 \bar{q} i \gamma^5 q$$

 χ is DM, a_0 the pseudoscalar and y_q are the standard model yukawa couplings.

Final term does not respect $SU(2)_L \times U(1)_Y$ gauge invariance.

2HDM portal

Introduce 2 Higgs Doublets
$$H_i = \left(\phi_i^+, (v_i + h_i + \eta_i)/\sqrt{2}\right)^T$$

The vevs are related as $v_2/v_1 \equiv \tan\beta$

The spectrum contains a pseudoscalar $A_0 = \cos\beta \, \eta_2 - \sin\beta \, \eta_1$, a charged scalar $H^\pm = \cos\beta \, \phi_2^\pm - \sin\beta \, \phi_1^\pm$ and two neutral CP-even scalars $h = \cos\alpha \, h_2 - \sin\alpha \, h_1$, $H_0 = -\sin\alpha \, h_2 - \cos\alpha \, h_1$ h is the 125 GeV SM Higgs state in the limit $\beta - \alpha = \pi/2$.

The pseudoscalar A_0 mixes with a_0 via

$$V_{\text{portal}} = i \kappa a_0 H_1^{\dagger} H_2 + \text{h.c.}$$
 (1)

to give two mass eigenstates $a=c_{\theta}\,a_0-s_{\theta}\,A_0$, $A=c_{\theta}\,A_0+s_{\theta}\,a_0$, with $c_{\theta}\equiv\cos\theta$ and $s_{\theta}\equiv\sin\theta$.

2HDM portal

- Take $\cos(\beta \alpha) = c_{\beta \alpha} = 0$ to make h SM like
- Type-II 2HDM gives couplings to b quarks and au leptons $\propto an eta = t_{eta}$. Coupling to t quark $\propto 1/t_{eta}$
- Flavour constraints from $\bar{B} \to X_{\rm S} \gamma$ and electroweak precision observables require $m_{\rm A}, m_{H_0}, m_{H^\pm} \gtrsim 500$ GeV.
- Unitarity requires $m_A \le 1.4$ TeV, $m_{H_0} \le 1$ TeV.
- $\langle \sigma v \rangle \simeq 3 \times 10^{-26} {\rm cm}^3/{\rm s}$ gives the right relic density and fits the Galactic Centre Excess.
- Fix $m_{\chi}=30$ GeV to be compatible with the GCE

Production mechanisms

Production via gluon fusion (suppressed at high t_{β}) or $b\bar{b}$ associated (enhanced at high t_{β})

Decay mechanisms

Decay into au pairs or into mono-Z + missing energy

Our new search

Our new search

With a $b \bar{b} l^+ l^- + E_T$ final state the dominant background is from $t\bar{t}$ decaying leptonically.

We can take advantage of the fact our leptons come from a Z and impose $m_{\ell\ell} \in [76, 106]$.

Z and a are roughly back to back, so impose $|p_T^{\ell\ell}-\not\!\!E_T|/p_T^{\ell\ell}<0.5$ Harsh cuts of $\not\!\!E_T>$ 110 GeV and $m_{T2}>$ 110 GeV get the $t\, \bar t$ background to a controllable level.

Results

 y_χ is fixed by the relic density. If $y_\chi > 4\pi$ the point is shaded grey. The DM mass is $m_\chi = 30$ GeV.

Results

Hatched region is our new search. Red: excluded by $B_{\rm S} \to \mu^+ \mu^-$, orange band: relic density. The DM mass is $m_\chi = 30$ GeV.

Conclusions

- Whether the GCE is dark matter or not, it is important to test its interpretation
- Consistent completions of simplified models are not so simple, and always offer richer phenomenology
- The implications of gauge invariance on the pseudoscalar model has opened up a new channel at the LHC

BACKUP:relic

Dominated by s-channel a-exchange when $m_a << m_A$

$$\langle \sigma \mathbf{v} \rangle = \frac{y_{\chi}^{2}}{2\pi} \frac{m_{\chi}^{2}}{m_{a}^{4}} s_{\theta}^{2} c_{\theta}^{2} t_{\beta}^{2} \left[\left(1 - \frac{4m_{\chi}^{2}}{m_{a}^{2}} \right)^{2} + \frac{\Gamma_{a}^{2}}{m_{a}^{2}} \right]^{-1} \times \sum_{f} N_{C} \frac{m_{f}^{2}}{V^{2}} \sqrt{1 - \frac{m_{f}^{2}}{m_{a}^{2}}}.$$
 (2)

 $\langle \sigma v \rangle \simeq 3 \times 10^{-26} cm^3/s$ gives the right relic density and fits the Galactic Centre Excess.

Fix $m_\chi=$ 30 GeV to be compatible with the GCE

BACKUP:cuts

Requiring $\not \! E_T >$ 110 GeV and $m_{T2} >$ 110 GeV removes most of the background (left) while not affecting most of the signal (right)

BACKUP:MT2

We calculate m_{T2} as

$$m_{T2}^2 \equiv \min_{\vec{k_T} + \vec{q_T} = \vec{p_T}} \left\{ \max \left[m_T^2(\vec{p_T^{\ell^+}}, \vec{k_T}), m_T^2(\vec{p_T^{\ell^-}}, \vec{q_T}) \right] \right\}$$
 (3)

where the minimisation is over all possible vectors $\vec{k_T}$ and $\vec{q_T}$ that satisfy $\vec{k_T} + \vec{q_T} = \vec{p_T}$

