
RooFit Parallelization

W. Verkerke (NIKHEF)"
P. Bos (eScience Center)

Wouter Verkerke, NIKHEF

Introduction - RooFit
•  RooFit is a OO language to write probability models, widely used in HEP.
•  User constructs PDF (of arbitrary complexity) as expression tree of RooFit

function objects
–  Scales to very complex models (>>10.000 objects for Higgs models)
–  All models provide full functionality for fitting, plotting and toy event generation

•  Under the hood, a variety of computational optimizations is applied for
potentially CPU-intensive tasks

–  Efficient toy MC generation techniques deployed by pdfs wherever possible
–  Pdfs provide analytical normalization integrals wherever possible
–  Multi-dimensional integrals can by partially numeric, partially analytic
–  Caching and lazy evaluation of integrals and other expensive objects
–  Constant expressions in Likelihood are automatically identified and optimized prior to fits
–  Typical effect of optimization between is a speedup factor 2-20

•  Philosophy – Let user concentrate on formulating physics problem
–  Let RooFit worry about optimal computation ‘under the hood’
–  Only user input is that PDFs provide analytical integrals and efficient generation algorithms

for known cases (will be automatically applied when possible)

Wouter Verkerke, NIKHEF

Parallelization in RooFit – When is it useful?

•  When is parallelization useful in RooFit?
•  RooFit is ingredient of ‘semi-interactive’ final step of physics analysis.

Operations should ideally not take more than a few seconds or
minutes, to preserve interactive workflow

•  True for most uses cases with ‘simple’ to ‘moderately complex’
probability models.

•  Not true for ambitious use cases
1.  Highly complex likelihood models (Higgs fit to all channels, ca 200 datasets,

O(1000) parameter) can take O(few) hours
2.  Unbinned ML fits with very large data samples
3.  Unbinned ML fits with MC-style numeric integrals (‘time-dependent angular

analysis of Dalitz decays’)
4.  Neyman construction of confidence belts (‘no asymptotic’). Requires many fits to

toy data samples

•  Will focus on use cases 1-3), as 4) is easily parallelizable by end-users
on batch facilities and is beyond scope of ‘semi-interactive’ use

•  In spirit of ‘semi-interactive’ use will focus on factor 10-30 speedup
on single multi-core machine to reduce O(few hour) operations to
O(few minute) operations

Wouter Verkerke, NIKHEF

Parallelization in RooFit – what is there now

•  Likelihood calculations inherently very suitable for parallel
calculation as calculation is repetition of Nevent equal calculations

•  RooFit currently has a simple parallel evaluation engine for
likelihood objects

•  Strategy: divide L(data|param) in N equally sized chunks

Wouter Verkerke, NIKHEF

Master

Slave(0) Slave(1) Slave(n)

RooFit parallelization – work flow

•  Essential features
–  Slaves are separate processes started with fork()
–  Inter process communication via combination of pipes and shared memory
–  Sequence of operation during fit"

"
1) Send Calculate command to each Slave (non-blocking)"
 (all slaves perform calculation in parallel)"
"
2) Send Retrieve command to each Slave (blocking)"
"
3) If evaluation errors were detected, request full details from slaves"
"
4) Combine Slave results and feed result to MINUIT"
"
5) Send UpdateParamValues command to each "
 Slave reflecting next point requested by MINUIT

–  Amount of data sent between master and"
slaves typically O(few 100) bytes

Wouter Verkerke, NIKHEF

Master

Slave(0) Slave(1) Slave(n)

RooFit parallelization performance

•  Consider a simple scenario (for parallelization): fitting a single pdf
to an unbinned dataset – how well does it scale with Ncpu?

•  TCPU(fit) = TCPU(Lcalc)/NCPU + TCPU(protocol-overh) + TCPU(comp-overh)
–  Protocol overhead is extra time spend passing information from/to slaves.
–  Computation overhead is extra time spent in duplicate calculations due to

splitting.

•  Protocol CPU overhead is typically very small, as little is done
(adding back likelihood components together).

•  Computational overhead varies by situation. In current
implementation PDF normalization integrals are calculated fully by
each Slave process.

–  For analytical integrals this is a small (neglibible) overhead.
–  For numeric integrals this may take as much time as likelihood calculation as is

a potentially killer issue. (One of the issues to be addressed. Will come back to
this)

Wouter Verkerke, NIKHEF

RooFit parallelization performance

•  But key metric is wall-time performance, so wall-time overhead
(waiting, idle times) are also important

•  Twall(fit) = TCPU(fit) + Twall(protocol-overh) + Twall(scheduling) + Twall(imbalance)
–  Protocol wall-time overhead is wall-time spent in inter-process communication
–  Scheduling wall-time overhead occurs if Slave process don’t all exactly start at the

same time due to OS-related scheduling timing
–  Imbalance wall time occurs if length of calculation (wall) time of the slaves varies

•  Protocol wall-time overhead must be small for parellelization to be
efficient at large NCPU (next up: performance tests of current
protocol)

•  Scheduling wall-time overhead can be a real problem! Size of an
individual slave task can be quite small à frequent start/stop of
calculations.

•  Imbalance wall-time overhead is strongly dependent on nature of the
model: for a single model/dataset, an (almost) perfectly balanced
workload is easy to achieve, but for a 500-dataset Higgs combination
likelihood with datasets varying between few(Kevt) unbinned and 1-
bin counting experiments, this can be extremely difficult.

Wouter Verkerke, NIKHEF

RooFit parallelization performance

•  Demonstration model: unbinned ML fit to sum-of-Gaussians pdf
(with fully analytical normalization)

•  Comparison of wall-times vs N(cores) uses

Wouter Verkerke, NIKHEF

Expected performance
(ideal parallelization)

Actual performance

Short fit (3-sec) Long fit (400-sec)

Performance quite horrible for NCPU>2 for
short fits (comparatively large fixed-time overhead),

Overhead becomes less dominant for longer fits

RooFit parallelization performance

•  Have been investigating various contributions of protocol, OS,
imbalance etc to overhead

•  Communication protocol overhead increases with NCPU, but is
tiny in size and cannot explain effect

Wouter Verkerke, NIKHEF

=0.1%
of total
wall time

=0.1%
of total
wall time

RooFit parallelization performance

•  Next investigated load-balancing overhead. What is difference
between slowest & fastest slave process?

Wouter Verkerke, NIKHEF

Differences tiny – but also expected here since this was the easiest use
case (single unbinned PDF with many events)

RooFit parallelization performance

•  Finally – looked into OS scheduling overhead. This turns to be the
dominant effect of wall-time overhead!

•  Can be improved by setting CPU affinity: if each slave process is
pinned to a designated core, overhead reduces drastically!

•  "
"

•  With CPU affinity fixed, total wall-time overhead of RooFit
parallelization w.r.t ideal is O(5%) for 8-core fit for 400-CPU second fit
(and better for longer fits)

•  Consider this ‘good enough for now’ and move on to address"
much more O(100%) scaling issues that arise with use of numeric
integrals and Likelihoods with >>1 dataset/model

Wouter Verkerke, NIKHEF

RooFit – timing & parallelization of numeric integrals
•  (Everything from here on is work in progress)
•  Project 1 – Distributed calculation of numeric integrals
•  Problem: If normalization integrals in a pdf expression are not (all)

analytical, per-slave overhead of numeric integration will spoil
scaling

Wouter Verkerke, NIKHEF

Parallelization with analytical integrals

Integral(s)

PDF eval
for all
events

Master

Master

RooFit – timing & parallelization of numeric integrals
•  (Everything from here on is work in progress)
•  Project 1 – Distributed calculation of numeric integrals
•  Problem: If normalization integrals in a pdf expression are not (all)

analytical, per-slave overhead of numeric integration will spoil
scaling

Wouter Verkerke, NIKHEF

Parallelization with numeric integrals

Integral(s)

PDF eval
for all
events

Master

Master

RooFit – timing & parallelization of numeric integrals
•  (Everything from here on is work in progress)
•  Project 1 – Distributed calculation of numeric integrals
•  Problem: If normalization integrals in a pdf expression are not (all)

analytical, per-slave overhead of numeric integration will spoil
scaling

Wouter Verkerke, NIKHEF

Parallelization with numeric integrals

Integral(s)

PDF eval
for all
events

Master

Master

Parallelize (MC) integral

Collect partial results

Distribute combined result

Master

RooFit – timing & parallelization of numeric integrals
•  (Everything from here on is work in progress)
•  Project 1 – Distributed calculation of numeric integrals
•  Problem: If normalization integrals in a pdf expression are not (all)

analytical, per-slave overhead of numeric integration will spoil
scaling

•  Can be solved by "
distributing calculation"
of integral

–  Modify RooMCIntegrator"
(but would then work"
transparently for all pdfs)

–  Modify Master/Slave"
architecture to be able"
to distribute more type of"
tasks (now only 1/Nth of L)

–  Threshold to decide if"
any given integral is expensive"
enough to merit overhead"
of distributed calculation

Wouter Verkerke, NIKHEF

Parallelization with numeric integrals

Master

Master

Parallelize (MC) integral

Collect partial results

Distribute combined result

Master

RooFit – timing & parallelization of multi-part Likelihoods
•  Project 2 – Intelligent balancing of component likelihood over

slaves
•  Problem: if a Likelihood consist of n>>1 component likelihoods

based on separate pdfs/datasets, load balancing becomes a
problem

•  Current strategy: parallelize each component likelihood

Wouter Verkerke, NIKHEF

L1

L2

Master

Master

RooFit – timing & parallelization of multi-part Likelihoods
•  Project 2 – Intelligent balancing of component likelihood over

slaves
•  Problem: if a Likelihood consist of n>>1 component likelihoods

based on separate pdfs/datasets, load balancing becomes a
problem

•  Current strategy: parallelize each component likelihood
–  Will break down if"

small components"
exist that cannot"
be evenly divided"
(e.g. Nevents/bins"
< Ncpu)

–  Typical Higgs"
combination"
likelihood (L1…L250)"
will only achieve"
2x speedup with"
NCPU=6.

Wouter Verkerke, NIKHEF

L1

L6

Master

Master

L2
L3
L4

L5

RooFit – timing & parallelization of multi-part Likelihoods
•  Project 2 – Intelligent balancing of component likelihood over

slaves
•  Problem: if a Likelihood consist of n>>1 component likelihoods

based on separate pdfs/datasets, load balancing becomes a
problem

•  New strategy – time components and distribute dynamically
–  Will break down if"

small components"
exist that cannot"
be evenly divided"
(e.g. Nevents/bins"
< Ncpu)

–  Typical Higgs"
combination"
likelihood (L1…L250)"
will only achieve"
2x speedup with"
NCPU=6.

Wouter Verkerke, NIKHEF

L1

L6

Master

Master

L2
L3
L4

L5

All of L1,L2

50% of L5

50% of L6

Short-term plans
•  Step 1 – Implement collection of timing information of numeric

integrals and Likelihood components (now in progress)
•  Step 2a – Augment existing Master/Slave scheduler to be able to

distribute calculations of multi-component likelihoods in arbitrary
ways: i.e. can specify calculation fraction of each component
likelihood individually

•  Steb 2b – Implement a new load balancing algorithm that divides
work between N slaves intelligently based on timing information
and dataset size information

•  Step 3a – Implement parallel calculation strategy for
RooMCIntegrator

•  Steb 3b – Augment existing Master/Slave schedule identify
expensive integrals for parallel calculation and execute them in
that way.

Wouter Verkerke, NIKHEF

Medium-term plans
•  Complete rewrite of Master/Slave scheduler

–  Current class structure not very suitable for new plans, "
but first need to test some of the new concepts before "
converging on a good practical design for the next scheduler

–  Foresee ability to have different back-end implementations"
for actual calculations: now only multi-core on single hosts."
Other useful backends could be multi-host, GPU-based,"
or backends that aim for a complete re-expression in another"
tool (Theano, tensorflow).

–  Need a bit of thinking on how to best design this: tie"
scheduler implementation to a particular back-end architecture"
(i.e. one scheduler for multi-core, one scheduler for GPU etc…),"
or decouple those and have another interface layer in between"
(that would e.g. allow hybrid calculation strategy: big likelihood"
components on paralellized on GPU, counting measurements"
on CPU).

Wouter Verkerke, NIKHEF

