Moduli stabilization in (string) model building: gauge fluxes and loops

Michele Trapletti
Institut für Theoretische Physik, Universität Heidelberg

Based on
hep-th/0605232 (with Felix Brümmer and Arthur Hebecker)
hep-th/0611102 (with Andreas Braun and Arthur Hebecker)
Introduction: the string-pheno paradigm

- Low energy string theory: $d=10$, $N=I/II$ SUGRA.
- Necessary a compatification on a 6d space K, such that SUSY is reduced to $N=1$ in 4d.

The choice of K:

I - Topological properties
 - “topological” properties of the 4d model;

II - Metric properties (Size & Shape)
 - “parameters” of the 4d model.

Point: I - Size & Shape are vev’s of dynamical fields;
 II - Flat potential at tree-level.

Which control on the phenomenology of the model?
- More in general we have to choose a \textit{background} for all the 4d scalars (internal components of metric, \textit{p}-forms ...)

Non-trivial background for the closed string \textit{p}-forms wrapped in the internal space (IIB Strings)

\textbf{\(\rightarrow\)} Stabilization of shape (complex structure) moduli.
\hspace{10pt} Giddings, Kachru, Polchinski ‘01

\textbf{\(\rightarrow\)} In case there is a \textit{single} size (Kähler) modulus extra effects (gaugino condensation) can fix it.
\hspace{10pt} Kachru, Kallosh, Linde, Trivedi ‘03

The minimal option is very specific: an extension is necessary.

Include the effect of

- gauge (open string) fluxes \(\rightarrow\) D-term stabilization;
- loop corrections;
- \(\alpha'\) corrections.
Study of the effects due to gauge fluxes and loop corrections in a 6d toy model

I - Review of the KKLT proposal:
- basic ingredients (fluxes & gaugino condensation)
- the sequestered “uplifting” sector.

II - Realization and extension (two Kahler moduli)
from 6d perspective.
- 6d SUGRA + SYM compactified on T^2/Z_2;
- Scherk-Schwarz mechanism as a source of W_0;
- The presence of gauge fluxes: D-term potential;
- Loop corrections;
- The complete potential: complete stabilization.
The KKLT proposal: basic issues

- Take a compactification of Type IIB string on a CY with a single Kähler modulus S.

- Include closed string fluxes
 → stabilization of complex structure moduli, that can be integrated out. A constant superpotential term W_0.

- Include non-perturbative effects (gaugino condensation)
 \[W = W_0 + e^{-S} \]
 → stabilization of S at a SUSY AdS minimum, with $S > 1$, $V_{\text{Min}} \sim -|W_0|^2$.

- Include a SUSY breaking mechanism
 → SUSY breaking and “uplifting” of the minimum.
The uplifting sector: sequestering in the throat

- The flux modifies the geometric background:
 "throats" develops: regions where $K^{10} \sim \text{AdS}_5 \times M^5$

- The AdS$_5$ can be seen as a realization of the Randall-Sundrum model: use the same language.

- The bottom of the throat (IR brane) is sequestered from the rest of the space, the top of the throat or UV brane, that is the visible brane.

- The details of the SUSY breaking sector are invisible in the visible sector: the SUSY breaking sector can be modelled in any way, the visible effects are just the same.

Choi, Falkowski, Nilles, Olechowski; Lebedev, Nilles, Ratz; Brümmer, Hebecker, MT., ...
6d SUGRA

- The bosonic 6d action is

\[(-g_6)^{-\frac{1}{2}} \mathcal{L} = -\frac{1}{2} R - \frac{1}{2} \partial_M \phi \partial^M \phi - \frac{1}{24} e^{2\phi} H_{MNP} H^{MNP} - \frac{1}{4} e^\phi F_{MNP} F^{MNP} \]

with

\[H_{MNP} = \partial_M B_{NP} + F_{MNP} A_P + \text{cyclic perm.} = (dB + F \wedge A)_{MNP} \]

and is invariant under the gauge transformations

\[\delta A = d\Lambda, \quad \delta B = -\Lambda F + dC \]

where \(\Lambda \) is a scalar and parametrizes the “\(F \)” gauge symmetry and \(C \) is a 1-form and parametrizes the “\(B \)” gauge symmetry.

This action can be seen as the outcome of a K3 compactification of string theory, in case the internal moduli fields are neglected.
Compactification to 4d: effective SUGRA

- We can consider a compactification on an internal T^2/Z_2.

$$(g_6)_{MN} = \begin{pmatrix} r^{-2}(g_4)_{\mu \nu} & 0 \\ 0 & r^2(g_2)_{mn} \end{pmatrix}, \quad (g_2)_{mn} = \frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$$

the dimensional reduction produces the following fields
- 4d metric g_4 + internal metric components r, τ_1, τ_2;
- 4d B field, i.e. one scalar c + internal $B_{56} = b$;
- 4d gauge field F;
- dilaton.

- g_4 and F fill the standard 4d SUGRA/SYM action;
- the scalars are organised in 3 chiral multiplets, S, T, τ, with Kähler potential

$$K = -\log(S + \bar{S}) - \log(T + \bar{T}) - \log(\tau + \bar{\tau})$$

- the gauge kinetic function is $2S$.

Scherk-Schwarz mechanism: a source for W_0

- **R-Symmetry in 6d SUGRA**
Let 6d SUGRA be defined as a compactification of 10d SUGRA
 - T^4 compactification: the 10d Lorentz group is broken as $SO(1,9) \rightarrow SO(1,6) \times SO(4)_R$.
 - $K3$ compactification:
 - consider $K3 \sim T^4/Z_n$ for simplicity
 - let $SO(4)_R = SU(2)_{R1} \times SU(2)_{R2}$
 - take Z_n in $SU(2)_{R1}$ \(\rightarrow \) $SU(2)_{R1}$ is broken but $SU(2)_{R2}$ remains as an active R-symmetry!

- **SS compactification of 6d SUGRA**
Consider a generic bulk field Φ and define
 \[
 \Phi(x^5 + 2\pi, x^6) = T_5 \Phi(x^5, x^6), \quad \Phi(x^5, x^6 + 2\pi) = T_6 \Phi(x^5, x^6)
 \]
with T_5 and T_6 being $SU(2)_R$ operators.
In case one of the matrices is non-trivial
 \[\rightarrow\] SS compactification

Dudas, Grojean ‘97;
Barbieri, Hall, Nomura ...;
- Consistency conditions: T^2 compactification

T_i is the embedding in $SU(2)_R$ of the translation t_i along x^i. Since $t_5 t_6 = t_6 t_5$ we need $T_5 T_6 = T_6 T_5$.

- Consistency conditions: T^2/Z_N compactification

In case of an orbifold, also the orbifold rotation r is embedded into the R-symmetry group, via a matrix R. Such a matrix is fixed (up to discrete choice) by the requirement of having SUSY in the 4d model, and is non-trivial.

Again, the commutation relations of t_5, t_6, and r define commutation relations for T_5, T_6, and R. These are non-trivial, since R is non-trivial.

In case a solution exists with T_5 and/or T_6 non-trivial

→ SS compactification

If then the non-trivial T’s can be chosen in a “continuos” way, linked to the identity, then the breaking is described by a constant superpotential term W_0.

Such is the case in T^2/Z_2 compactifications ...

... and only in this case in the 2d case.

Lee ‘05
Gauge background: D-term potential

- We can consider a constant background $F_{56} = f$.
- The fields A^5, A^6 are not globally defined:
 $$ A(z+\pi) = A(z) + d\Lambda_0 $$
- Thus also B_{56} is not globally defined:
 since $H = dB + F \wedge A$ and H is gauge invariant, it follows $B(z+\pi) = B(z) - \Lambda_0 F$, thus both A and B have a non-trivial profile in the internal space.
- In order to single out the zero modes of A and B we
 a) define $A = \langle A \rangle + \mathcal{A}$, splitting the background field, not globally defined, from the “quantum fluctuations”, globally defined and with standard constant zero-mode (standard KK massless state);
 b) redefine the field B as $B = \mathcal{B} + \langle A \rangle \wedge \mathcal{A}$ so that the new field \mathcal{B} is also globally defined with

Kaloper, Myers ’99; Villadoro PhD Thesis ‘06
- Given the redefinition:

\[\delta B_{56} = -2\Lambda f \]

\[\rightarrow \] B transforms (as expected)

\[\rightarrow \] the gauge transformation is the double of what one would naively expect from \(H = dB + F \wedge A \)

- The “new” SUGRA is exactly the old one, provided that one redefines the field \(\hat{b} = B_{56} \) as \(b = B_{56} \). In this way the field \(T \), whose imaginary part is \(b \), transforms under the gauge transformation.

- Given such a transformation we can infer the D-term potential \(D = i K_I X^I \), where \(X^I \) is the Killing vector, in the present case being \(X^T = -i f \).

- Thus we have \(D = f / t \), and \(V_D = \frac{f^2}{2st^2} \).

- We can compute the potential also directly from the \(F^2 \) term in the lagrangian, the two results coincide.
D-term + $W_0 +$ gaugino condensation : a clash?

- Take the KKLT model
 - single modulus S
 - superpotential $W = W_0 + e^{-S}$

- Can we use a D-term potential to break SUSY and uplift the AdS minimum? No, for two reasons:

I - The D-term is associated with a gauge transformation involving one modulus. If there is only S then it must transform, but this is incompatible with $W = W_0 + e^{-S}$.

Choi et al.; Dudas, Vempati; Villadoro, Zwirner

- Present case: **no clash!** The field transforming is T, and the field entering the gaugino condensation term is S.

 see also Haack et al. ‘06 for a realization with D7-branes

 (other way out: $A(M) e^{-S}$ Achucarro et al; Dudas et al; Haack et al....)

II - D-terms and F-terms are related, and it is impossible to uplift a SUSY minimum ($F = 0$) via a D-term.

- Present case: **no clash!** The minimum with non-zero D-term is non-SUSY: F_T is not zero! (but no uplift ...)
Loop corrections

- We can introduce in the system bulk fields (hypers) charged under the U(1) gauge group.
- These fields have a standard KK reduction in absence of a gauge background.
- In the presence of a gauge background the KK reduction is deeply modified:

\[m_n^2 = \frac{2|f|}{r^4} \left(n + \frac{1}{2} \right) \] for bosons, \[m_n^2 = \frac{2|f|}{r^4} \left(n + \frac{1}{2} \pm \frac{1}{2} \right) \] for fermions,

and the degeneracy can be deduced via the Dirac index:

\[d_n = \frac{f}{2\pi} = N \]

- From the 4d spectrum the 1-loop potential follows

\[V_{loop} = \frac{\alpha |f|^3}{(2\pi)^3 (st)^2} \]

Bachas ‘95
The complete potential: stabilization

Ingredients:

I - $W = W_0 + e^{-S}$ (from SS twist and gaugino condensation)

II - D-term potential

$$V_D = \frac{f^2}{2st^2}$$

III - Loop corrections

$$V_{loop} = \frac{\alpha |f|^3}{(2\pi)^3(st)^2}$$

Step 1:

Neglect t and include only I: \Rightarrow KKLT potential in S, $\tilde{V}(s)$

s fixed in a SUSY AdS minimum

Step 2:

Include t $\Rightarrow V = \tilde{V}(s)/t$ runaway behaviour in t

Step 3:

Include the D-term (II) \Rightarrow stabilization of t in a non-SUSY AdS minimum

Step 4:

Include the loop effect (III) \Rightarrow no destabilization (but also no uplift)
Conclusions

- We have shown the role of gauge fluxes/D-terms in the stabilization of a 6d SUGRA model, that can be seen as a non-trivial extension of the KKLT model.
 - No clash D-term vs $W = W_0 + e^{-S}$: extra modulus!
 - D-term crucial in the stabilization the extra modulus.
 - No uplifting via the D-term.

- Computed the 1-loop corrections to the potential, and re-cast them as corrections to the Khäler potential.
 - No de-stabilization of the minimum.
 - No uplifting.

- “By-product”: we considered SS compactification in 2d as a source for W_0
 - Possible for T^2 or T^2/Z_2 compactifications;
 - Not possible for T^2/Z_N compactifications.