Higgs production and decay in SUSY with CP violation

Stefan Hesselbach
School of Physics & Astronomy, University of Southampton

based on

SUSY07, Karlsruhe, July 27, 2007
Outline

- Introduction
 - MSSM with complex parameters
 - Higgs sector in complex MSSM
- Di-photon decay $H_1 \rightarrow \gamma\gamma$ in complex MSSM
 - Focus on $\text{BR}(H_1 \rightarrow \gamma\gamma)$
 - Impact of light SUSY particles
 - Dependence on SUSY parameters
- Outlook
 - Full production and decay $gg \rightarrow H_i \rightarrow \gamma\gamma$ at LHC
 - CP-violating NMSSM
Introduction

MSSM with complex parameters

- General MSSM:
 Many parameters can be complex

- Explicit CP violation
 May help to explain baryon asymmetry of universe

- Constraints from electric dipole moments (EDMs) of e, n, Hg, Tl
 [Ibrahim, Nath, ’99; Barger, Falk, Han, Jiang, Li, Plehn, ’01; Abel, Khalil, Lebedev, ’01]
 [Oshima, Nihei, Fujita, ’05; Pospelov, Ritz, ’05; Olive, Pospelov, Ritz, Santoso, ’05]
 [Abel, Lebedev, ’05; Yaser Ayazi, Farzan, ’06, ’07]

- Global U(1) symmetries: some phases eliminated
 → e.g. phase of one gaugino mass parameter M_i

- Physical phases in Higgs sector
 μ: Higgs-higgsino mass parameter
 A_f: trilinear couplings of sfermions
Introduction

Higgs sector in complex MSSM

- MSSM: 2 Higgs doublets
 → 5 physical Higgs particles at tree-level (h, H, A, H^\pm)

- \tilde{t} and \tilde{b} loops ⇒ explicit CP violation in Higgs sector
 [Pilaftsis, '98]
 [Pilaftsis, Wagner, '99; Demir, '99, Carena, Ellis, Pilaftsis, Wagner, '00, '01; Choi, Drees, Lee, '00]

- CP-even (h, H) and CP-odd (A) neutral Higgs mix
 → 3 neutral mass eigenstates (H_1, H_2, H_3), mixing matrix O

- Impact on Higgs search
 [LEP Higgs Working Group, hep-ex/0602042]
 → MSSM Higgs search at LEP: no universal limit on m_{H_1}

- Spectrum calculation (masses m_{H_i} and mixing matrix O)
 - CP*SUPERH
 [Carena, Ellis, Pilaftsis, Wagner '00]
 [Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner '03; Ellis, Lee, Pilaftsis, '06]
 - FEYNHIGGS
 [Heinemeyer '01; Frank, Heinemeyer, Hollik, Weiglein '02]
 [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, '06]
$H_1 \rightarrow \gamma\gamma$

- $pp \rightarrow H \rightarrow \gamma\gamma$: important search channel at LHC for $m_H \lesssim 150$ GeV

- Decay at 1-loop via $f, W, H^\pm, \tilde{f}, \tilde{\chi}^\pm$ loops in MSSM

- CP violation (CPV) enters via phase dependence of
 - Masses $m_{H_i} \rightarrow$ small
 - Mixing matrix $O \leftrightarrow H_i$ couplings (also to SM particles)
 - $\tilde{f}, \tilde{\chi}^\pm$ sector (masses, couplings to H_i)
\[H_1 \rightarrow \gamma\gamma \] Production and decay in CPV MSSM

- Production \(gg \rightarrow H_i \) at LHC
 \[\rightarrow \text{factor 2–5 enhancement/reduction of } \sigma \text{ with } \varphi_\mu \text{ and } \varphi_{A_t} \]

- \(gg \rightarrow H_i \rightarrow \gamma\gamma \) at LHC in CPV MSSM
 - Heavy sparticles (\(\tilde{f}, \tilde{\chi}^\pm \))
 \[\leftrightarrow \text{CPV in } H_i \text{ couplings} \]
 - \(\mathcal{O}(10^2–10^3) \) suppression of \(\text{BR}(H_1 \rightarrow \gamma\gamma) \) possible
 \[\Rightarrow \text{suppression of } \sigma \times \text{BR} \]

for
\[M_{\tilde{Q},\tilde{U},\tilde{D}} = m_{\tilde{g}} = M_{\text{SUSY}} = 0.5 \text{ TeV}, \]
\[|A_t| = |A_b| = \kappa M_{\text{SUSY}}, |\mu| = 2|A_t|, \]
\[\Phi = \text{Arg}(A_t \mu) = \text{Arg}(A_b \mu) \]

[Choi, Lee, '99; Dedes, Moretti, '99]
[Choi, Hagiwara, Lee, '01]

S. Hesselbach
SUSY07, Karlsruhe, July 27, 2007
$H_1 \rightarrow \gamma\gamma$

Analysis of Branching Ratio

Here:

- Investigate possible effects of light sparticles
- Calculation of m_{H_i}, O, $\Gamma(H_i)$, $\text{BR}(H_i)$ with CP SUPERH
- Detailed discussion of A_f, μ, $\tan \beta$ dependence
- Leading contributions to (h, H)-A mixing $\propto \text{Im}(\mu A_f)$

$$\phi_{\text{eff}} = \phi_\mu + \phi_{A_f}$$

→ Choosing A_f real, analyzing $\phi_{\text{eff}} = \phi_\mu$ effects in the following

First step: analysis of $\text{BR}(H_1 \rightarrow \gamma\gamma)$

Scan over MSSM parameters [Moretti, Munir, Poulose, ’07]

→ in average $\sim 50\%$ deviation between CPV and CPC case possible for parameter points with m_{H_1} in bins of size 4 GeV
$H_1 \rightarrow \gamma\gamma$

Numerical results

\[\text{BR}(H_1 \rightarrow \gamma\gamma) \text{ as function of } m_{H_1} \]

for $M(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3) = 1 \text{ TeV}$, $|\mu| = 1 \text{ TeV}$, $A_f = 1.5 \text{ TeV}$, $\tan \beta = 20$

\[\rightarrow M_{\tilde{U}_3} = 1 \text{ TeV (no light sparticles)} \]

\[\rightarrow \text{CP effects from } H_1 \text{ couplings to } W, t, b \text{ in loops} \]

\[\rightarrow M_{\tilde{U}_3} = 250 \text{ GeV } (m_{\tilde{t}_1} \sim 200 \text{ GeV}) \]

\[\rightarrow \text{additional effects from light } \tilde{t}_1 \]
Numerical results

m_{H_1} as function of m_{H^\pm}

for $M(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3) = 1$ TeV, $|\mu| = 1$ TeV, $A_f = 1.5$ TeV, $\varphi_\mu = 0$, $\varphi_\mu = 90^\circ$

→ deviations $\Delta m_{H_1}(\varphi_\mu)$ within experimental uncertainty
\(H_1 \rightarrow \gamma \gamma \)

Numerical results

\[BR(H_1 \rightarrow \gamma \gamma) \] as function of \(m_{H^\pm} \)

for \(M(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3) = 1 \) TeV, \(|\mu| = 1 \) TeV, \(A_f = 1.5 \) TeV, \(\tan \beta = 20 \)

\(\rightarrow M_{\tilde{U}_3} = 1 \) TeV (no light sparticles)

\(\rightarrow \) CP effects from \(H_1 \) couplings to \(W, t, b \) in loops

\(\rightarrow M_{\tilde{U}_3} = 250 \) GeV \((m_{\tilde{t}_1} \sim 200 \) GeV)

\(\rightarrow \) additional effects from light \(\tilde{t}_1 \)
\(H_1 \rightarrow \gamma\gamma \)

Numerical results

\[
\text{BR}(H_1 \rightarrow \gamma\gamma) \text{ as function of } m_{H^\pm}
\]

for \(M(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3) = 1 \text{ TeV}, \ |\mu| = 1 \text{ TeV}, \ A_f = 0.5 \text{ TeV}, \ \tan \beta = 20 \)

\[
\rightarrow M_{\tilde{U}_3} = 1 \text{ TeV (no light sparticles)}
\]

\[
\rightarrow M_{\tilde{U}_3} = 250 \text{ GeV (} m_{\tilde{t}_1} \sim 200 \text{ GeV)}
\]

\[
\rightarrow \text{strong } A_f \text{ dependence}
\]
$H_1 \rightarrow \gamma\gamma$

Summary: SUSY parameter dependence

$\text{BR}(H_1 \rightarrow \gamma\gamma)$ in CP-violating MSSM

- Impact of light sparticles
 - light stops (\tilde{t}_1): possibly large effect
 - other light sparticles ($\tilde{b}_1, \tilde{\tau}_1, \tilde{\chi}_1^\pm$): small effect

- Strong A_f dependence

- $|\mu|$ dependence
 - φ_μ dependence decreases for smaller $|\mu| = 500$ GeV

- $\tan \beta$ dependence
 - sensitivity to φ_μ considerably reduced for smaller $\tan \beta = 5$

- Conclusion: Strong phase dependence of $\text{BR}(H_1 \rightarrow \gamma\gamma)$
 - Increase or decrease depends on SUSY scenario
Outlook

Projects within

New connections between Experiment and Theory
(NExT) Institute
(Southampton University ↔ PPD, RAL)

http://www.hep.phys.soton.ac.uk/next/NEXT_web/NEXT_web.htm

- Analysis of full production + decay process $gg \rightarrow H_i \rightarrow \gamma\gamma$
 - Enhancement or cancellation between production + decay?
 - Impact of Higgs mixing in propagator [Ellis, Lee, Pilaftsis, '04]
 - Net effect for Higgs search at LHC

- Explicit CP violation in NMSSM Higgs sector
 - 3 CP-even and 2 CP-odd Higgs states mix \Rightarrow 5 mass eigenstates