Exploring the Landscape – Statistics of String Theory Vacua

Florian Gmeiner

(INKHEF, Amsterdam)

SUSY 2007, 07/26/07
Exploring the Landscape – Statistics of String Theory Vacua

Florian Gmeiner

Introduction and Motivation

Intersecting brane models

Computational methods

Results

Conclusions

Outline

1 Introduction and Motivation
 String phenomenology
 Statistics
 What to look for?

2 Intersecting brane models

3 Computational methods

4 Results
 Gauge groups
 Chiral matter
 Standard models
 Correlations

5 Conclusions
String phenomenology

Problems

- There are zillions of possible low energy solutions. (The Landscape)
- BUT – No explicit construction that resembles the standard model is known.

Questions

- Will it be possible to predict all low energy observables from string theory?
- Might we have to invoke antropic reasoning? (cf. planetary orbits)
- Is there a fundamental principle for vacuum selection? (i.e. an "entropic principle")
String phenomenology

Problems

- There are zillions of possible low energy solutions. (The Landscape)
- BUT – No explicit construction that resembles the standard model is known.

Questions

- Will it be possible to predict all low energy observables from string theory?
- Might we have to envoke antropic reasoning? (cf. planetary orbits)
- Is there a fundamental principle for vacuum selection? (i.e. an "entropic principle")
Statistics

- Explore as much of the landscape as possible, in regions as different as possible.
- Analyse results (low energy observables) statistically.
- Two possible methods:
 - Use statistics directly, calculate distributions of properties using a simplified measure on the space of solutions. [Denef, Douglas]
 - Construct solutions explicitly, analyse ensemble using statistical methods (counting).

 IBMs: [Blumenhagen, Douglas, FG, Honecker, Lüst, Stein, Taylor, Weigand]
 Gepner: [Anastasopoulos, Disjkstra, Kiritsis, Huiszoon, Schellekens]
 Heterotic: [Dienes, Lebedev, Lennek, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter]
What to look for?

Common patterns

- Look for similarities in frequency distributions of low energy observables.
- Exclude uninteresting regions of the landscape.
- Where are the huge numbers coming from – what kind of scenarios are common, which are rare?

Correlations

- Finding the same correlations in different regions of the landscape might lead to predictions.
- Could give hints to fundamental principles in string theory, yet to be discovered.
What to look for?

Common patterns

- Look for similarities in frequency distributions of low energy observables.
- Exclude uninteresting regions of the landscape.
- Where are the huge numbers coming from – what kind of scenarios are common, which are rare?

Correlations

- Finding the same correlations in different regions of the landscape might lead to predictions.
- Could give hints to fundamental principles in string theory, yet to be discovered.
Type IIA orientifolds with D6–branes at angles. [Berkooz, Douglas, Leigh]

Dual to type IIB with magnetised D9–branes.

Compactifications on $\mathbb{R}^{3,1} \times M$ to $\mathcal{N} = 1$ supersymmetric solutions in four dimensions.

M compact, toroidal orbifold T^6/G with $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, $G = \mathbb{Z}_6$, $G = \mathbb{Z}_6'$ [Work in progress with G. Honecker].

Branes and orientifold planes wrap three–cycles Π_a in M.

Possible cycles Π given by $H_3(M, \mathbb{Z})$, which splits into parts even/odd under orientifold projection.

Chiral matter arises at intersections of brane stacks and it’s amount is computed by intersection numbers $I_{ab} = \Pi_a \circ \Pi_b$.
Exploring the Landscape – Statistics of String Theory Vacua

Florian Gmeiner

Introduction and Motivation
Intersecting brane models
Computational methods
Results
Conclusions
IBM's

Gauge group

- Total gauge group will be a semi–simple Lie group.
- Rank: $\sum_{a=1}^{k} N_a$ for k stacks of branes with N_a branes per stack.
- Factors: In general $U(N_a)$. $SO(2N)$ or $Sp(2N)$ if stack wraps the same cycle as the orientifold plane.

Chiral matter

<table>
<thead>
<tr>
<th>representations</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_a, \overline{N}_b)</td>
<td>$\Pi_a \circ \Pi_b$</td>
</tr>
<tr>
<td>(N_a, N_b)</td>
<td>$\Pi_a \circ \Pi'_b$</td>
</tr>
<tr>
<td>Sym_a</td>
<td>$\frac{1}{2} (\Pi_a \circ \Pi_a' - \Pi_a \circ \Pi_{O6})$</td>
</tr>
<tr>
<td>Anti_a</td>
<td>$\frac{1}{2} (\Pi_a \circ \Pi_a' + \Pi_a \circ \Pi_{O6})$</td>
</tr>
</tbody>
</table>
Gauge group

- Total gauge group will be a semi–simple Lie group.
- Rank: $\sum_{a=1}^{k} N_a$ for k stacks of branes with N_a branes per stack.
- Factors: In general $U(N_a)$. $SO(2N)$ or $Sp(2N)$ if stack wraps the same cycle as the orientifold plane.

Chiral matter

<table>
<thead>
<tr>
<th>representations</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_a, \bar{N}_b)</td>
<td>$\Pi_a \circ \Pi_b$</td>
</tr>
<tr>
<td>(N_a, N_b)</td>
<td>$\Pi_a \circ \Pi'_b$</td>
</tr>
<tr>
<td>Sym_a</td>
<td>$\frac{1}{2} (\Pi_a \circ \Pi_a' - \Pi_a \circ \Pi_{O6})$</td>
</tr>
<tr>
<td>Anti_a</td>
<td>$\frac{1}{2} (\Pi_a \circ \Pi_a' + \Pi_a \circ \Pi_{O6})$</td>
</tr>
</tbody>
</table>
Constraints

Supersymmetry

Calibration condition on three–cycles: sLags.

Tadpole cancellation

Cancellation of RR charge:

$$\sum_a N_a (\Pi_a + \Pi_{a'}) = R_{O6} \Pi_{O6}.$$

K-theory

$$\sum_a N_a \Pi_a \circ \Pi_p \equiv 0 \mod 2,$$

for any probe brane p with $\Pi_p \circ \Pi_{O6} = 0$. [Uranga]
Supersymmetry
Calibration condition on three–cycles: sLags.

Tadpole cancellation
Cancellation of RR charge:

\[\sum_a N_a (\Pi_a + \Pi_{a'}) = R_{O6} \Pi_{O6}. \]

K-theory

\[\sum_a N_a \Pi_a \circ \Pi_p \equiv 0 \mod 2, \]

for any probe brane \(p \) with \(\Pi_p \circ \Pi_{O6} = 0 \). [Uranga]
Constraints

Supersymmetry

Calibration condition on three–cycles: sLags.

Tadpole cancellation

Cancellation of RR charge:

\[
\sum_a N_a (\Pi_a + \Pi_{a'}) = R_{O6} \Pi_{O6}.
\]

K-theory

\[
\sum_a N_a \Pi_a \circ \Pi_p \equiv 0 \mod 2,
\]

for any probe brane \(p\) with \(\Pi_p \circ \Pi_{O6} = 0\). [Uranga]
Standard model embedding

Gauge group

\[U(3)_a \times U(2)_b / Sp(2)_b \times U(1)_c \times U(1)_d \]

\[U(3)_a = SU(3)_{QCD} \times U(1)_a \]

\[U(2)_b = SU(2)_w \times U(1)_b \]

\[U(1)_Y: \text{appropriate (massless) combination}\]

\[Q_Y = \sum x_i Q_i \]
Computational methods

- Express the constraints in terms of algebraic equations.
- Formulate in algorithmic form.
- The full problem is NP–complete, but specific questions can be answered in polynomial time. [Douglas, Denef, Taylor]
- Large subsets of solutions however can be analysed. In the \(\mathbb{Z}_6' \) case all solutions can be computed.
- One has to be careful with the choice of subsets (unwanted bias).
Number of solutions

- In all cases it is possible to proof that the number of solutions is finite.

- Total number differs by 18 orders of magnitude:
 \[O(10^{10}) \text{ for } T^6/\mathbb{Z}_2 \times \mathbb{Z}_2, \]
 \[O(10^{23}) \text{ for } T^6/\mathbb{Z}_6', \]
 \[O(10^{28}) \text{ for } T^6/\mathbb{Z}_6. \]

- Differences can be understood from first principles (fractional cycles, constraints).
$T^6/(\mathbb{Z}_2 \times \mathbb{Z}_2)$: Frequency distribution of the total rank r of all models.
Rank of the gauge group

T^6/\mathbb{Z}_6: Frequency distribution of the total rank r of all models.
Exploring the Landscape – Statistics of String Theory Vacua

Florian Gmeiner

Introduction and Motivation

Intersecting brane models

Computational methods

Results

Gauge groups
Chiral matter
Standard models
Correlations

Conclusions

$T^6/(\mathbb{Z}_2 \times \mathbb{Z}_2)$: Frequency distribution of the rank of gauge group factors.
Gauge group factors

T^6/\mathbb{Z}_6: Frequency distribution of the rank of gauge group factors.
As a measure for the amount of chirality define the “mean chirality” as the amount of chiral matter per brane intersection:

\[\chi := \frac{2}{k(k+1)} \sum_{a,b>a} (I_{ab} - I_{ab}') \]

(Normalisation such that a pure standard model would have \(\chi = 3. \))
$T^6/(\mathbb{Z}_2 \times \mathbb{Z}_2)$: Frequency distribution of mean chirality.
Chiral matter

\(T^6/\mathbb{Z}_6 \): Frequency distribution of mean chirality.
$T^6/(\mathbb{Z}_2 \times \mathbb{Z}_2)$: Frequency distribution of standard models with g generations. blue: massive $U(1)$ allowed.
Number of generations

T^6/\mathbb{Z}_6: Frequency distribution of standard models with g generations. red: non–standard Higgs allowed, blue: no exotic matter at all.
Correlation between number of bifundamental matter in (N, N) and (N, \bar{N}) representations of the gauge groups. Left: IBMs (\mathbb{Z}_6), Right: Gepner models.
Conclusions

Summary

- Systematic studies of the landscape might be interesting.
- General features of specific constructions can be analysed.
- There exist non–trivial correlations.

Outlook

- Compare results from different corners of the landscape.
- Systematic search for correlating observables.
- Include more properties: Gauge– and Yukawa–couplings, etc.
Conclusions

Summary

- Systematic studies of the landscape might be interesting.
- General features of specific constructions can be analysed.
- There exist non–trivial correlations.

Outlook

- Compare results from different corners of the landscape.
- Systematic search for correlating observables.
- Include more properties: Gauge– and Yukawa–couplings, etc.