

Contribution ID: 175

Type: Parallel Talk

Constraints on the very early universe from WIMP dark matter

Friday 27 July 2007 16:30 (20 minutes)

We investigate the relic density n_χ of non-relativistic long-lived or stable particles χ in non-standard cosmological scenarios. We calculate the relic abundance starting from arbitrary initial temperatures of the radiation-dominated epoch, and derive the lower bound on the initial temperature $T_0 \geq m_\chi/23$, assuming that thermally produced χ particles account for the dark matter energy density in the universe; this bound holds for all χ annihilation cross sections. We also investigate cosmological scenarios with modified expansion rate. Even in this case an approximate formula similar to the standard one is capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at $T \sim m_\chi/20$, well before Big Bang nucleosynthesis.

Author: Dr KAKIZAKI, Mitsuru (Physics Institute, Bonn University)

Co-authors: Dr IMINNIYAZ, Hoernisa (Physics Institute, Bonn University); Prof. DREES, Manuel (Physics Institute, Bonn University)

Presenter: Dr KAKIZAKI, Mitsuru (Physics Institute, Bonn University)

Session Classification: Cosmology 4

Track Classification: Cosmology and Astrophysics