Search for Supersymmetric Neutral Higgs Bosons at the Tevatron

Tim Scanlon

On behalf of the CDF and DØ Collaborations
• Introduction
 - Tevatron & experiments

• Neutral SUSY Higgs Searches
 - Minimal Supersymmetric SM
 - Fermiophobic Higgs

• Prospects & Conclusions

[Thanks to all my Tevatron colleagues]
Tevatron continues to perform well

- Over 3 fb$^{-1}$ delivered to each experiment
- Peak luminosities of $\sim 3 \times 10^{32}$

- Performance matching design
 integrated luminosity of $\sim 7-8$ fb$^{-1}$ by 2009
CDF and DØ experiments

- Both detectors extensively upgraded for Run IIa
 - New silicon vertex detector
 - New tracking system
 - Upgraded μ chambers

- CDF: New plug calorimeter & ToF

- DØ
 - New solenoid & preshowers
 - Run IIb: New inner layer in SMT & L1 trigger
Neutral SUSY Higgs

- Introduction

- **Minimal Supersymmetric Standard Model (MSSM)**
 - Introduction
 - Analysis Tools
 - Neutral Higgs bosons (ϕ) searches
 $\phi \rightarrow \tau\tau$
 $b\phi \rightarrow b\tau\tau$
 $b\phi \rightarrow bbb$

- Fermiophobic Higgs

- Prospects & Conclusions

Tim Scanlon – SUSY07
Higgs bosons in the MSSM

- MSSM has 2 Higgs doublets
 - \(H_u \) (\(H_d \)) couple to up- (down-) type fermions
 - After EWSB 5 Higgs particles: \(h, H, A, H^+, H^- \)
 - \(h \) has to be light: \(m_h < \sim 140 \text{ GeV} \)
 - At tree level, 2 independent parameters: \(m_A \) and \(\tan \beta \)
 - \(\tan \beta \): Ratio of VEV’s = \(< H_u>/ < H_d> \)

- At large \(\tan \beta \):
 - Coupling of \(A, h/H \) to down-type fermions, e.g. \(b \)-quark, enhanced wrt SM
 - \(\rightarrow \) production amplitude \(\sim \tan \beta \rightarrow \) production cross section \(\sim \tan^2 \beta \)
 - \(h/H \) & \(A \) (denoted by \(\phi \)) \(\sim \) degenerate in mass \(\rightarrow \) further increase in cross-section

- For low & intermediate masses
 - \(\text{Br} (\phi \rightarrow bb) \sim 90\% \), \(\text{Br} (\phi \rightarrow \tau \tau) \sim 10\% \)
MSSM Higgs boson production

- Signatures
 - Higgs decays to 2 τ's
 - Further decays of τ's define final states
 - Higgs decays to 2 high p_T b-jets/2 τ's
 - 1 or 2 associated b-quarks

- Good b-jet and τ identification vital

Similar overall sensitivities \rightarrow Combine
b-jet Identification

- MSSM Higgs → bb ~90% of time
 - Improves S/B by > 10

- Use lifetime information
 - Correct for MC/data differences
 - Measured at given operating points

CDF: Secondary vertex reconstruction
- Neural Net - improves purity
- Inputs: track multiplicity, p_T, vertex decay length, mass, fit
- **Loose** = 50% eff, 1.5% mis-tag
- **Tight** = 40% eff, 0.5% mis-tag

DØ: Neural Net tagger
- Secondary vertex & dca based inputs, derived from basic b-tagging tools
- High efficiency, purity
- **Loose** = 70% eff, 4.5% mis-tag
- **Tight** = 50% eff, 0.5% mis-tag
• CDF: Isolation based
 - Require 1 or 3 tracks, $p_T > 1$ GeV in the isolation cone
 - For 3 tracks total charge must be ± 1
 - $p_T^{\text{had}} > 15$ (20) GeV for 1 (3) prongs
 - $m^{\text{had}} < 1.8$ (2.2) GeV
 - Reject electrons via E/p cut
 - Validated via W/Z measurements
 - Performance
 - Efficiency ~ 40-50%
 - Jet to τ fake rate ~0.001-0.005

• DØ: 3 NN’s for each τ type
 - Validated via Z’s

- $\tau^\pm \rightarrow \pi^\pm \nu$
- $\tau^\pm \rightarrow \pi^\pm \pi^0 \nu$
- $\tau^\pm \rightarrow \pi^\pm \pi^\pm \pi^0 (\pi^0) \nu$
Neutral MSSM Higgs → \(\tau\tau \) had/\(l \)

- **Main bkgds.**: \(Z\rightarrow\tau\tau \) (irreducible), multi-jet, W+jets, \(Z\rightarrow\mu\mu, \, ee, \, di-boson \)

- **DØ (μ channel only):**
 - Only 1 isolated \(\mu \) separated from hadronic \(\tau \) with opposite sign
 - \(m_W < 20 \) GeV removes most of remaining W+jets bkg.
 - Optimized NNs to separate signal from bkg.

- **CDF (μ, e, e+μ channels)**
 - Isolated e or \(\mu \) separated from hadronic \(\tau \) with opposite sign
 - Multi-jet background suppression: \(|p_T^l| + |p_T^{had}| + E_T > 55 \) GeV
 - Cut on relative directions of the visible \(\tau \) decay products and missing \(E_T \) removes W+jets bkg.
Neutral MSSM Higgs → \(\tau_l \tau_{\text{had}} \)

- **CDF**: Cross-section limits - derived from \(m_{\text{vis}} \) distribution
 - Observed limits weaker than expected due to an excess in data sample, but significance \(\leq 2\sigma \) once all search channels & windows considered

- **DØ**: Cross-section limits - derived from NNs for the different \(\tau \) types
Neutral MSSM Higgs $\rightarrow \tau_l \tau_{\text{had}}$

- Proceed to set limits
- $\sigma \times \text{Br} (\phi \rightarrow \tau \tau)$
Neutral MSSM Higgs → τ⁺τ⁻ had

- MSSM parameter space
 - Use no-mixing & m_h^{max} benchmark scenarios
 - $90 < m_A < 200$ GeV,
 - $\tan\beta > 40 - 60$ excluded
Neutral MSSM Higgs → \(\tau_l \tau_{\text{had}} + b \)

- **DØ: ICHEP 2006** (344 pb\(^{-1}\))

- **Main bkgds.:** \(Z+(b) \)jets → \(\tau\tau/\mu\mu+(b) \)jets, multi-jet, \(tt \rightarrow bb\tau\mu, W+jets, WW \)

- **\(\mu \) channel only:**
 - 1 isolated \(\mu \) separated from the hadronic \(\tau \) with opposite sign
 - \(\tau \) identification: NN cuts optimised for analysis
 - 1 IP b-tagged jet
 - Optimized kinematic NN to separate signal from \(tt \) bkg.

- **No excess: Set Limits**
 - Limits set using \(m_{\text{vis}} \)
 - Competitive with bbb channel even with 1:9 branching ratio
Neutral MSSM Higgs $\rightarrow b\tau_l\tau_{\text{had}}$

- Limits in MSSM parameter space
 - Use no-mixing & m_h^{max} benchmark scenarios

Tim Scanlon – SUSY07 15
Neutral MSSM Higgs \rightarrow bb + b[b]

- **DØ: ICHEP ’06**
- ≥ 3 b-tagged jets: $p_T > 40, 25, 15$ GeV
 - Invariant mass of 2 leading jets peaks at Higgs mass
- **Backgrounds from data**
 - Shape estimated from double-tagged di-jet mass spectrum
 - Rate normalized outside signal window
- **Agreement between data & predicted background** \rightarrow set upper limits
- **Preliminary analysis being optimized**
 - New version this summer
Fermiophobic Higgs

- Introduction

- Minimal Supersymmetric Standard Model (MSSM)
 - Introduction
 - b-jet Identification
 - τ Identification
 - Neutral Higgs bosons (ϕ) searches
 - $\phi \rightarrow \tau\tau$
 - $\phi \rightarrow b\tau\tau$
 - $b\phi \rightarrow bbb$

- Fermiophobic Higgs

- Prospects & Conclusions
Fermiophobic Higgs $\rightarrow 3\gamma + X$

- Some extensions of SM: coupling of Higgs to fermions suppressed
 - Searches previously carried out at LEP and Tevatron

- Search channel (2 Higgs Doublet Model):
 $$p\bar{p} \rightarrow h_f H^\pm \rightarrow h_f h_f W^\pm \rightarrow \gamma\gamma(\gamma) + X$$

- Backgrounds
 - Direct 3γ production (DTP)
 - Jets or electrons misidentified as γ
 - Estimated from data

- Cuts
 - 3γ with $|\eta| < 1.1$, $E_T^{1,2,3} > 30, 20, 15$ GeV
 - $H_T(3\gamma) > 25$ GeV
 - Rejects 3-particle events

- 0 events seen for 1.1 expected
• No excess, set limits:
 - 95% CL limit: $\sigma(hH^{\pm}) < 25.3\text{fb}$

• Exclusion on mass of h_f for different charged Higgs masses ($m_{H^{\pm}}$) & $\tan\beta$
• Introduction

• Neutral SUSY Higgs

• Prospects and Conclusions
Prospects - MSSM Higgs

- 1st results from 1fb⁻¹ show promising sensitivity
 - 2.5 fb⁻¹ data available
 - Many algorithmic/analysis improvements

- Short term (this summer)
 - New $b\phi \rightarrow b b + b(b)$
 - From both experiments
 - New MSSM combination
 - $b\phi \rightarrow b b + b(b)$ & $\phi \rightarrow \tau \tau$ & $b\phi \rightarrow b\tau\tau$

- Longer term
 - Up to $m_A \sim 250$ GeV for large $\tan\beta$
 - Down to $\tan\beta \sim 20$ for low m_A
 - Or discovery
Conclusions

• Tevatron and CDF/ DØ experiments performing very well

• Wide range of SUSY Higgs searches performed by CDF & DØ with up to 1 fb⁻¹ Run II data:
 - No signal observed in MSSM Higgs search, but already powerful!

• Updated CDF and DØ combinations soon
 - Rapid evolution in sensitivity
 - Over 2.5 times more data under analysis

Very exciting times ahead!
Backup slides
Several mature algorithms used:

- 3 main categories:
 - Soft-lepton tagging
 - Impact Parameter based
 - Secondary Vertex reconstruction

Combine in Neural Network:
- vertex mass
- vertex number of tracks
- vertex decay length significance
- chi2/DOF of vertex
- number of vertices
- two methods of combined track impact parameter significances
B-tagging - (DØ) Certification

- Have MC / data differences - particularly at a hadron machine
 - Measure performance on data
 - Tag Rate Function (TRF)
 - Parameterized efficiency & fake-rate as function of p_T and η
 - Use to correct MC b-tagging rate

- b and c-efficiencies
 - Measured using a b-enriched data sample

- Fake-rate
 - Measured using QCD data

Tim Scanlon
Imperial College London
MSSM benchmarks

- Five additional parameters due to radiative correction
 - \(M_{\text{SUSY}} \) (parameterizes squark, gaugino masses)
 - \(X_t \) (related to the trilinear coupling \(A_t \rightarrow \) stop mixing)
 - \(M_2 \) (gaugino mass term)
 - \(\mu \) (Higgs mass parameter)
 - \(M_{\text{gluino}} \) (comes in via loops)

- Two common benchmarks
 - Max-mixing - Higgs boson mass \(m_h \) close to max possible value for a given \(\tan \beta \)
 - No-mixing - vanishing mixing in stop sector \(\rightarrow \) small mass for \(h \)
CDF - MSSM Higgs $\rightarrow \tau_\ell \tau_{\text{had}}$

No excess seen in this channel