Local SU(5) Unification from the Heterotic String

Christoph Lüdeling
ITP, Universität Heidelberg

1 Introduction
2 The Model
3 Anomaly Cancellation
4 Local GUT
5 Outlook
Introduction

- **GUT:** Attractive features:
 - $SU(3) \times SU(2) \times U(1) \subset SU(5), SO_{10} \ldots$, gauge couplings unify
 - Unification matter into larger multiplets

- Drawbacks in 4d GUTS
 - Large Higgs representations required
 - Doublet–triplet–splitting
 - Yukawa couplings do not unify

- Drawbacks can be addressed in higher-dimensional orbifold GUTs

- Nice possibility: Heterotic String:
 - $E_8 \times E_8$ gauge symmetry included
 - Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
 - UV completion
• **GUT:** Attractive features:
 - $SU(3) \times SU(2) \times U(1) \subset SU(5), SO_{10} \ldots$, gauge couplings unify
 - Unification matter into larger multiplets

• **Drawbacks in 4d GUTS**
 - Large Higgs representations required
 - Doublet–triplet–splitting
 - Yukawa couplings do not unify

• Drawbacks can be addressed in higher-dimensional orbifold GUTs

• **Nice possibility:** Heterotic String:
 - $E_8 \times E_8$ gauge symmetry included
 - Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
 - UV completion
Introduction

- **GUT:** Attractive features:
 - $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1) \subset \text{SU}(5), \text{SO}_{10} \ldots$, gauge couplings unify
 - Unification matter into larger multiplets

- **Drawbacks in 4d GUTS**
 - Large Higgs representations required
 - Doublet–triplet–splitting
 - Yukawa couplings do not unify

- **Drawbacks can be addressed in higher-dimensional orbifold GUTs**
 - Nice possibility: Heterotic String:
 - $E_8 \times E_8$ gauge symmetry included
 - Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
 - UV completion
Introduction

- **GUT**: Attractive features:
 - $SU(3) \times SU(2) \times U(1) \subset SU(5), SO_{10}$, gauge couplings unify
 - Unification matter into larger multiplets

- **Drawbacks in 4d GUTS**
 - Large Higgs representations required
 - Doublet–triplet–splitting
 - Yukawa couplings do not unify

- **Drawbacks can be addressed in higher-dimensional orbifold GUTs**

- **Nice possibility**: Heterotic String:
 - $E_8 \times E_8$ gauge symmetry included
 - Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
 - UV completion
Introduction

- **GUT**: Attractive features:
 - $SU(3) \times SU(2) \times U(1) \subset SU(5), SO_{10}, \ldots$, gauge couplings unify
 - Unification matter into larger multiplets

- **Drawbacks in 4d GUTS**
 - Large Higgs representations required
 - Doublet–triplet–splitting
 - Yukawa couplings do not unify

- **Drawbacks can be addressed in higher-dimensional orbifold GUTs**

- **Nice possibility: Heterotic String:**
 - $E_8 \times E_8$ gauge symmetry included
 - Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
 - UV completion

[Kobayashi, Raby, Zhang; Buchmüller, Hamaguchi, Lebedev, Ratz; Kim, Kim, Kyae; Förste, Nilles, Vaudrevange, Wingerter, Ramos-Sanchez, \ldots]
Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
- Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
- Gauge symmetry reduced at fixed points (but rank usually preserved)
- Twisted sectors: States localised at fixed points
Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
 - Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
 - Gauge symmetry reduced at fixed points (but rank usually preserved)
 - Twisted sectors: States localised at fixed points
Choose a torus with discrete isometry ("twist") with fixed points
Mod out by this isometry, fixed points become singularities
Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
Gauge symmetry reduced at fixed points (but rank usually preserved)
Twisted sectors: States localised at fixed points
Choose a torus with discrete isometry ("twist") with fixed points

Mod out by this isometry, fixed points become singularities

Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines

Gauge symmetry reduced at fixed points (but rank usually preserved)

Twisted sectors: States localised at fixed points
The Model: Geometry

- Torus: $G_2 \times SU(3) \times SO(4)$ root lattice, $\mathbb{Z}_{6-II} = \mathbb{Z}_3 \times \mathbb{Z}_2$ twist:

[Kobayashi, Raby, Zhang]

- Obtain effective 6D Theory on T^2/\mathbb{Z}_2 orbifold
- Internal zero modes and twisted states show up as bulk states, twisted states are localised at orbifold fixed points

[Kobayashi, Hamaguchi, Lebedev, Ratz]
The Model: Geometry

- Torus: $G_2 \times SU(3) \times SO(4)$ root lattice, $\mathbb{Z}_{6-II} = \mathbb{Z}_3 \times \mathbb{Z}_2$ twist:

[Buchmüller, Hamaguchi, Lebedev, Ratz]

[Kobayashi, Raby, Zhang]

- Obtain effective 6D Theory on T^2/\mathbb{Z}_2 orbifold
- Internal zero modes and twisted states show up as bulk states, twisted states are localised at orbifold fixed points
The Model: Geometry

- Torus: $G_2 \times SU(3) \times SO(4)$ root lattice, $\mathbb{Z}_{6-II} = \mathbb{Z}_3 \times \mathbb{Z}_2$ twist:

 [Buchmüller, Hamaguchi, Lebedev, Ratz]

 \[\mathbb{Z}_{6-II} = \mathbb{Z}_3 \times \mathbb{Z}_2 \]

- [Kobayashi, Raby, Zhang]

- String Scale

- Obtain effective 6D Theory on T^2/\mathbb{Z}_2 orbifold

 - Internal zero modes and \mathbb{Z}_3 twisted states show up as bulk states, \mathbb{Z}_2 twisted states are localised at orbifold fixed points

[C. Lüdeling (ITP, Universität Heidelberg)]

[SUSY ‘07, July 26, 2007]
The Model: Effective T^2/\mathbb{Z}_2 Orbifold
The Model: Effective T^2/\mathbb{Z}_2 Orbifold

SU(5) SU(2) \times SU(4)

SU(6)

SU(5) SU(2) \times SU(4)
The Model: Effective T^2/\mathbb{Z}_2 Orbifold

SU(5) \to SU(2) \times SU(4)

SU(5) \to SU(2) \times SU(4)

SU(6)

$35 = 9 \times (6 + \bar{6})$

20
The Model: Effective T^2/\mathbb{Z}_2 Orbifold
The Model: Effective T^2/\mathbb{Z}_2 Orbifold

SU(5) \rightarrow $\bar{5} + 10$

SU(2) \times SU(4) \rightarrow 4×2

SU(5) \rightarrow $\bar{5} + 10$

SU(2) \times SU(4) \rightarrow 4×2

SU(6) \rightarrow 35, $9 \times (6 + \bar{6})$, 20

2 MSSM generations \rightarrow exotics
Anomalies

- Orbifold have bulk and brane anomalies
 - Anomaly cancellation by Green–Schwarz mechanism requires factorisation of anomaly polynomials, $l_8 = X_4 Y_4$ and $l_6^f = X_4^f Y_2$
 - $\mathcal{O}(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
 - Anomalous U(1)’s induce localised FI terms

\[
\begin{align*}
\xi_0 &= 148 \left(\frac{g M_P^2}{384 \pi^2} \right) \delta^{(2)}(z - z_0) \\
\xi_1 &= 80 \left(\frac{g M_P^2}{384 \pi^2} \right) \delta^{(2)}(z - z_1)
\end{align*}
\]

- These lead to localisation of bulk fields, break the U(1) and need to be cancelled to obtain SUSY vacuum
Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green–Schwarz mechanism requires factorisation of anomaly polynomials, $I_8 = X_4 Y_4$ and $I_6^f = X_4^f Y_2$
- $O(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous $U(1)$'s induce localised FI terms

\[
\xi_0 = 148 \left(\frac{g M_p^2}{384 \pi^2} \right) \delta^{(2)}(z - z_0)
\]
\[
\xi_1 = 80 \left(\frac{g M_p^2}{384 \pi^2} \right) \delta^{(2)}(z - z_1)
\]

- These lead to localisation of bulk fields, break the $U(1)$ and need to be cancelled to obtain SUSY vacuum
Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green–Schwarz mechanism requires factorisation of anomaly polynomials, $I_8 = X_4 Y_4$ and $I_6^f = X_4^f Y_2$
- $O(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous U(1)’s induce localised FI terms

\[\xi_0 = 148 \left(\frac{gM_P^2}{384\pi^2} \right) \delta^{(2)}(z - z_0) \]
\[\xi_1 = 80 \left(\frac{gM_P^2}{384\pi^2} \right) \delta^{(2)}(z - z_1) \]

- These lead to localisation of bulk fields, break the U(1) and need to be cancelled to obtain SUSY vacuum
Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green–Schwarz mechanism requires factorisation of anomaly polynomials, $l_8 = X_4 Y_4$ and $l_6^f = X_4^f Y_2$
- $O(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous $U(1)$’s induce localised FI terms

$$\xi_0 = 148 \left(\frac{g M_P^2}{384 \pi^2} \right) \delta^{(2)}(z - z_0)$$

$$\xi_1 = 80 \left(\frac{g M_P^2}{384 \pi^2} \right) \delta^{(2)}(z - z_1)$$

- These lead to localisation of bulk fields, break the $U(1)$ and need to be cancelled to obtain SUSY vacuum
• Orbifold have bulk and brane anomalies
• Anomaly cancellation by Green–Schwarz mechanism requires factorisation of anomaly polynomials, $I_8 = X_4 Y_4$ and $I_6^f = X_4 Y_2$
• $\mathcal{O}(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
• Anomalous U(1)'s induce localised FI terms

\[
\xi_0 = 148 \left(\frac{gM_P^2}{384\pi^2} \right) \delta^{(2)}(z - z_0)
\]

\[
\xi_1 = 80 \left(\frac{gM_P^2}{384\pi^2} \right) \delta^{(2)}(z - z_1)
\]

• These lead to localisation of bulk fields, break the U(1) and need to be cancelled to obtain SUSY vacuum

[Lee, Nilles, Zucker]
Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

\[
\text{in our case: } \quad \text{SU}(6) \rightarrow \left\{ \begin{array}{c}
\text{SU(5)} \\
\text{SU(2)} \times \text{SU(4)}
\end{array} \right.
\]

- In zero mode spectrum, only the intersection of local groups survives, which is \(G_{\text{SM}} = \text{SU}(3) \times \text{SU}(2) \times \text{U}(1) \)
- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets
- Due to higher symmetry, decoupling of exotics much more transparent than in four-dimensional limit
Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

 \[
 \text{in our case: } \quad \text{SU}(6) \longrightarrow \begin{cases}
 \text{SU}(5) \\
 \text{SU}(2) \times \text{SU}(4)
 \end{cases}
 \]

- In zero mode spectrum, only the intersection of local groups survives, which is \(G_{\text{SM}} = \text{SU}(3) \times \text{SU}(2) \times \text{U}(1) \)

 - Localised fields come in complete multiplets of local GUT group
 - Due to other branes, bulk fields form split multiplets
 - Due to higher symmetry, decoupling of exotics much more transparent than in four-dimensional limit
Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

\[
\text{in our case: } \quad \text{SU}(6) \longrightarrow \left\{ \begin{array}{c} \text{SU}(5) \\ \text{SU}(2) \times \text{SU}(4) \end{array} \right.
\]

- In zero mode spectrum, only the intersection of local groups survives, which is \(G_{SM} = \text{SU}(3) \times \text{SU}(2) \times U(1) \)
- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets
- Due to higher symmetry, decoupling of exotics much more transparent than in four-dimensional limit
Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

\[\text{in our case: } \begin{align*}
SU(6) &\rightarrow \left\{ \begin{array}{c}
SU(5) \\
SU(2) \times SU(4)
\end{array} \right.
\end{align*} \]

- In zero mode spectrum, only the intersection of local groups survives, which is \(G_{\text{SM}} = SU(3) \times SU(2) \times U(1) \)
- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets
- Due to higher symmetry, decoupling of exotics much more transparent that in four-dimensional limit
On branes, SUSY is broken to $\mathcal{N} = 1$

Bulk Matter:
- Hypermultiplets, split as $H = (H_L, H_R)$ into chiral multiplet
- Bulk vector multiplets split as $V = (A, \phi)$ into vector and chiral multiplets

Only one $\mathcal{N} = 1$ multiplet survives projection
On branes, SUSY is broken to $\mathcal{N} = 1$

Bulk Matter:
- Hypermultiplets, split as $H = (H_L, H_R)$ into chiral multiplet
- Bulk vector multiplets split as $V = (A, \phi)$ into vector and chiral multiplets
- Only one $\mathcal{N} = 1$ multiplet survives projection
Several pairs of $\mathbf{5} + \bar{\mathbf{5}}$ and most exotics decoupled easily

Remaining $\mathbf{5}$'s and $\bar{\mathbf{5}}$'s:

<table>
<thead>
<tr>
<th>Bulk:</th>
<th>$\mathbf{5}$</th>
<th>$\mathbf{5}_1$</th>
<th>$\bar{\mathbf{5}}_c^0$</th>
<th>$\bar{\mathbf{5}}$</th>
<th>$\bar{\mathbf{5}}_1$</th>
<th>$\bar{\mathbf{5}}_2$</th>
<th>$\bar{\mathbf{5}}_c^0$</th>
<th>$\bar{\mathbf{5}}_c^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero modes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU(3) × SU(2)</td>
<td>(1, 2)</td>
<td>(1, 2)</td>
<td>(3, 1)</td>
<td>(1, 2)</td>
<td>(1, 2)</td>
<td>(3, 1)</td>
<td>(3, 1)</td>
<td>(1, 2)</td>
</tr>
<tr>
<td>U(1)$_{B-L}$</td>
<td>0</td>
<td>0</td>
<td>$-\frac{2}{3}$</td>
<td>0</td>
<td>0</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>-1</td>
</tr>
<tr>
<td>MSSM content</td>
<td>H_u</td>
<td></td>
<td></td>
<td>H_d</td>
<td>d_3</td>
<td></td>
<td></td>
<td>l_3</td>
</tr>
</tbody>
</table>
Decoupling

- Several pairs of $\mathbf{5} + \bar{\mathbf{5}}$ and most exotics decoupled easily
- Remaining $\mathbf{5}$'s and $\bar{\mathbf{5}}$'s:

<table>
<thead>
<tr>
<th>Bulk:</th>
<th>$\mathbf{5}$</th>
<th>$\mathbf{5}_1$</th>
<th>$\bar{\mathbf{5}}_0$</th>
<th>$\mathbf{\bar{5}}$</th>
<th>$\bar{\mathbf{5}}_1$</th>
<th>$\bar{\mathbf{5}}_2$</th>
<th>$\mathbf{5}_0$</th>
<th>$\mathbf{5}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero modes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU(3) \times SU(2)</td>
<td>$(1, 2)$</td>
<td>$(1, 2)$</td>
<td>$(3, 1)$</td>
<td>$(1, 2)$</td>
<td>$(1, 2)$</td>
<td>$(\bar{3}, 1)$</td>
<td>$(\bar{3}, 1)$</td>
<td>$(1, 2)$</td>
</tr>
<tr>
<td>U(1)$_{B-L}$</td>
<td>0</td>
<td>0</td>
<td>$-\frac{2}{3}$</td>
<td>0</td>
<td>0</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>-1</td>
</tr>
<tr>
<td>MSSM content</td>
<td>H_u</td>
<td></td>
<td></td>
<td>H_d</td>
<td>d_3</td>
<td></td>
<td></td>
<td>l_3</td>
</tr>
</tbody>
</table>
Decoupling

- Several pairs of $\mathbf{5} + \bar{\mathbf{5}}$ and most exotics decoupled easily
- Remaining $\mathbf{5}$’s and $\bar{\mathbf{5}}$’s:

<table>
<thead>
<tr>
<th>Zero modes:</th>
<th>Bulk:</th>
<th>$\mathbf{5}$</th>
<th>$\mathbf{5}_1$</th>
<th>$\bar{\mathbf{5}}^c_0$</th>
<th>$\bar{\mathbf{5}}$</th>
<th>$\bar{\mathbf{5}}_1$</th>
<th>$\bar{\mathbf{5}}_2$</th>
<th>$\mathbf{5}^c_0$</th>
<th>$\mathbf{5}^c_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU($3 \times SU(2)$</td>
<td>(1, 2)</td>
<td>(1, 2)</td>
<td>(3, 1)</td>
<td>(1, 2)</td>
<td>(1, 2)</td>
<td>(3, 1)</td>
<td>(3, 1)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>U(1_{B-L})</td>
<td>0</td>
<td>0</td>
<td>$-\frac{2}{3}$</td>
<td>0</td>
<td>0</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>MSSM content</td>
<td>H_u</td>
<td></td>
<td></td>
<td></td>
<td>H_d</td>
<td>d_3</td>
<td></td>
<td>l_3</td>
<td></td>
</tr>
</tbody>
</table>

- $2 \times (\bar{\mathbf{5}} + \mathbf{10})$ generations on the branes
- $2 \times (\mathbf{5} + \bar{\mathbf{10}})$ generations in the bulk
- $\mathbf{5} + \bar{\mathbf{5}}$ Higgses in the bulk
Split Multiplets

- Bulk generations:
 \[
 \tilde{5}_{(3)} = (\bar{3}, 1) + (1, 2) \quad \quad 10_{(3)} = (3, 2) + (\bar{3}, 1) + (1, 1)
 \]
 \[
 \tilde{5}_{(4)} = (\bar{3}, 1) + (1, 2) \quad \quad 10_{(4)} = (3, 2) + (\bar{3}, 1) + (1, 1)
 \]

- Higgses:
 \[
 5_u = (3, 1) + (1, 2) \quad \quad \tilde{5}_d = (\bar{3}, 1) + (1, 2)
 \]
Split Multiplets

• Bulk generations:

\[\begin{align*}
\tilde{5}_{(3)} &= (\bar{3}, 1) + (1, 2) \\
\tilde{5}_{(4)} &= (\bar{3}, 1) + (1, 2) \\
10_{(3)} &= (3, 2) + (\bar{3}, 1) + (1, 1) \\
10_{(4)} &= (3, 2) + (\bar{3}, 1) + (1, 1)
\end{align*}\]

• Higgses:

\[\begin{align*}
5_u &= (3, 1) + (1, 2) \\
\tilde{5}_d &= (\bar{3}, 1) + (1, 2)
\end{align*}\]
Split Multiplets

• Bulk generations:

\[\tilde{5}_{(3)} = (\bar{3}, 1) + (1, 2) \]
\[\tilde{5}_{(4)} = (\bar{3}, 1) + (1, 2) \]
\[10_{(3)} = (3, 2) + (\bar{3}, 1) + (1, 1) \]
\[10_{(4)} = (3, 2) + (\bar{3}, 1) + (1, 1) \]

One generation remains, avoiding SU(5) mass relations

• Higgses:

\[5_u = (3, 1) + (1, 2) \]
\[\tilde{5}_d = (\bar{3}, 1) + (1, 2) \]
Split Multiplets

- Bulk generations:

\[
\tilde{5}_{(3)} = (\bar{3}, 1) + (1, 2) \\
\tilde{5}_{(4)} = (\bar{3}, 1) + (1, 2) \\
5_{(3)} = (3, 1) + (1, 2) \\
10_{(3)} = (3, 2) + (\bar{3}, 1) + (1, 1) \\
10_{(4)} = (3, 2) + (\bar{3}, 1) + (1, 1)
\]

One generation remains, avoiding SU(5) mass relations

- Higgses:

\[
\begin{align*}
5_u &= (3, 1) + (1, 2) \\
\tilde{5}_d &= (\bar{3}, 1) + (1, 2)
\end{align*}
\]
Split Multiplets

- Bulk generations:

\[
\begin{align*}
\bar{5}_{(3)} &= (\bar{3}, 1) + (1, 2) \\
\bar{5}_{(4)} &= (\bar{3}, 1) + (1, 2)
\end{align*}
\]

\[
\begin{align*}
10_{(3)} &= (3, 2) + (\bar{3}, 1) + (1, 1) \\
10_{(4)} &= (3, 2) + (\bar{3}, 1) + (1, 1)
\end{align*}
\]

One generation remains, avoiding SU(5) mass relations

- Higgses:

\[
\begin{align*}
5_u &= (3, 1) + (1, 2) \\
\bar{5}_d &= (\bar{3}, 1) + (1, 2)
\end{align*}
\]
Split Multiplets

- Bulk generations:
 \[\tilde{5}_{(3)} = (\bar{3}, 1) + (1, 2) \]
 \[\tilde{5}_{(4)} = (\bar{3}, 1) + (1, 2) \]
 \[10_{(3)} = (3, 2) + (\bar{3}, 1) + (1, 1) \]
 \[10_{(4)} = (3, 2) + (\bar{3}, 1) + (1, 1) \]

One generation remains, avoiding SU(5) mass relations

- Higgses:
 \[5_u = (3, 1) + (1, 2) \]
 \[\bar{5}_d = (\bar{3}, 1) + (1, 2) \]

Orbifold projection solves doublet–triplet–splitting
Yukawa Couplings

\[W = C_{(ij)}^{(u)} 5_u 10_{(i)} 10_{(j)} + C_{(ij)}^{(d)} 5_d \bar{5}_{(i)} 10_{(j)} \]

\[C_{(ij)}^{(u)} = \begin{pmatrix} a_1 & 0 & a_2 & a_3 \\ 0 & a_1 & a_2 & a_3 \\ a_2 & a_2 & 0 & g \\ a_3 & a_3 & g & a_4 \end{pmatrix}, \quad C_{ij}^{(d)} = \begin{pmatrix} 0 & 0 & b_1 & b_2 \\ 0 & 0 & b_1 & b_2 \\ b_3 & b_3 & b_4 & 0 \\ b_5 & b_5 & b_6 & b_5^2 \end{pmatrix} \]
Yukawa Couplings

\[W = C_{(ij)}^{(u)} \mathbf{5}_u \mathbf{10}_i \mathbf{10}_j + C_{(ij)}^{(d)} \mathbf{5}_d \mathbf{\bar{5}}_i \mathbf{10}_j \]

\[C_{(ij)}^{(u)} = \begin{pmatrix} a_1 & 0 & a_2 & a_3 \\ 0 & a_1 & a_2 & a_3 \\ a_2 & a_2 & 0 & g \\ a_3 & a_3 & g & a_4 \end{pmatrix}, \quad C_{ij}^{(d)} = \begin{pmatrix} 0 & 0 & b_1 & b_2 \\ 0 & 0 & b_1 & b_2 \\ b_3 & b_3 & b_4 & 0 \\ b_5 & b_5 & b_6 & b_5^2 \end{pmatrix} \]

\[a_1 = \langle Y^c_0 \bar{Y}^c_0 S_1 S_3 \rangle, \quad a_2 = \langle (\bar{Y}^c_0 S_1)^2 S_5 \rangle, \quad a_3 = \langle Y^c_0 \bar{Y}^c_0 S_1 S_3 S_5 \rangle, \]
\[a_4 = \langle Y^c_0 \bar{Y}^c_0 S_1 S_3 (S_5)^2 \rangle, \]
\[b_1 = \langle Y_0 \bar{Y}_1 (S_5)^3 (S_7)^2 \rangle, \quad b_2 = \langle X^c_1 \bar{Y}^c_2 U^c_1 S_7 \rangle, \quad b_3 = \langle X^c_1 \bar{Y}_1 S_3 (S_5 S_7)^2 \rangle, \]
\[b_4 = \langle (X^c_1)^2 \bar{Y}_1 U^c_1 S_4 S_7 \rangle, \quad b_5 = \langle S_5 \rangle, \quad b_6 = \langle (X^c_1)^2 Y_1 S_1 S_7 \rangle \]
Yukawa Couplings

\[W = C_{(ij)}^{(u)} 5_u 10(i) 10(j) + C_{(ij)}^{(d)} 5_d \bar{5}(i) 10(j) \]

\[C_{(ij)}^{(u)} = \begin{pmatrix} a_1 & 0 & a_2 & a_3 \\ 0 & a_1 & a_2 & a_3 \\ a_2 & a_2 & 0 & g \\ a_3 & a_3 & g & a_4 \end{pmatrix}, \quad C_{ij}^{(d)} = \begin{pmatrix} 0 & 0 & b_1 & b_2 \\ 0 & 0 & b_1 & b_2 \\ b_3 & b_3 & b_4 & 0 \\ b_5 & b_5 & b_6 & b_5^2 \end{pmatrix} \]

\[W = Y_{ij}^u h_u u_i^c q_j + Y_{ij}^d h_d d_i^c q_j + Y_{ij}^l h_d l_i e_j^c \]

\[Y_{ij}^u = \begin{pmatrix} a_1 & 0 & a_3 \\ 0 & a_1 & a_3 \\ a_2 & a_2 & g \end{pmatrix}, \quad Y_{ij}^d = \begin{pmatrix} 0 & 0 & b_2 \\ 0 & 0 & b_2 \\ b_5 & b_5 & b_7 \end{pmatrix}, \quad Y_{ij}^l = \begin{pmatrix} 0 & 0 & b_1 \\ 0 & 0 & b_1 \\ b_3 & b_3 & b_4 \end{pmatrix} \]
Outlook

• Constructed local 6D GUT from the heterotic string
 • Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
 • More symmetry in 6D → simple decoupling of unwanted states
 • Supersymmetric vacuum: four-dimensional D-term vanishes

Open Questions:
 • Phenomenology needs to be improved (CKM mixing, R-parity)
 • Stabilisation of moduli, in particular, size of two-dimensional torus
 • Profiles of bulk fields due to localised FI terms
 • Blowup/resolution of singularities, generalisation to K3 internal space
• Constructed local 6D GUT from the heterotic string
• Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
• More symmetry in 6D → simple decoupling of unwanted states
• Supersymmetric vacuum: four-dimensional D-term vanishes
• Open Questions:
 • Phenomenology needs to be improved (CKM mixing, R-parity)
 • Stabilisation of moduli, in particular, size of two-dimensional torus
 • Profiles of bulk fields due to localised FI terms
 • Blowup/resolution of singularities, generalisation to K3 internal space
Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
- More symmetry in 6D \Rightarrow simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes

Open Questions:
- Phenomenology needs to be improved (CKM mixing, R-parity)
- Stabilisation of moduli, in particular, size of two-dimensional torus
- Profiles of bulk fields due to localised $F1$ terms
- Blowup/resolution of singularities, generalisation to K3 internal space
Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
- More symmetry in 6D \implies simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
 - Phenomenology needs to be improved (CKM mixing, R-parity)
 - Stabilisation of moduli, in particular, size of two-dimensional torus
 - Profiles of bulk fields due to localised FI terms
 - Blowup/resolution of singularities, generalisation to K3 internal space
• Constructed local 6D GUT from the heterotic string
• Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
• More symmetry in 6D \leadsto simple decoupling of unwanted states
• Supersymmetric vacuum: four-dimensional D-term vanishes
• Open Questions:
 • Phenomenology needs to be improved (CKM mixing, R-parity)
 • Stabilisation of moduli, in particular, size of two-dimensional torus
 • Profiles of bulk fields due to localised FI terms
 • Blowup/resolution of singularities, generalisation to K3 internal space
Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
- More symmetry in 6D \Rightarrow simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
 - Phenomenology needs to be improved (CKM mixing, R-parity)
 - Stabilisation of moduli, in particular, size of two-dimensional torus
 - Profiles of bulk fields due to localised FI terms
 - Blowup/resolution of singularities, generalisation to K3 internal space
Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
- More symmetry in 6D \Rightarrow simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
 - Phenomenology needs to be improved (CKM mixing, R-parity)
 - Stabilisation of moduli, in particular, size of two-dimensional torus
 - Profiles of bulk fields due to localised FI terms
 - Blowup/resolution of singularities, generalisation to K3 internal space
●Constructed local 6D GUT from the heterotic string
●Doublet–triplet splitting achieved easily, SU(5) mass relations avoided due to split bulk multiplets
●More symmetry in 6D ⇛ simple decoupling of unwanted states
●Supersymmetric vacuum: four-dimensional D-term vanishes
●Open Questions:
 ●Phenomenology needs to be improved (CKM mixing, R-parity)
 ●Stabilisation of moduli, in particular, size of two-dimensional torus
 ●Profiles of bulk fields due to localised FI terms
 ●Blowup/resolution of singularities, generalisation to K3 internal space