Phenomenology of Large Volume Compactifications in Type IIB String Theory

Kerim Suruliz (DAMTP, Cambridge)

SUSY 07, Karlsruhe, July 31, 2007

based on:

hep-th/0704xxx, J. Conlon, C. Kom, KS, B. Allanach, F. Quevedo
hep-th/0701154, D. Cremades, M.-P. Garcia del Moral, F. Quevedo, KS
hep-th/0610129, J. Conlon, S. Abdussalam, F. Quevedo, KS

...
Plan of Talk

- Motivation.
Plan of Talk

- Motivation.
- Moduli stabilisation and Large Volume models.
Plan of Talk

- Motivation.
- Moduli stabilisation and Large Volume models.
- Spectra and Phenomenology.
Plan of Talk

- Motivation.
- Moduli stabilisation and Large Volume models.
- Spectra and Phenomenology.
- Summary and Conclusions.
Motivation

Motivation

- Low energy supersymmetry as a solution to the hierarchy problem.
Motivation

- Low energy supersymmetry as a solution to the hierarchy problem.
- SUSY must be broken: soft terms - gaugino and scalar masses, A-terms etc.
Motivation

- Low energy supersymmetry as a solution to the hierarchy problem.
- SUSY must be broken: soft terms - gaugino and scalar masses, A-terms etc.
- What does string theory predict for the supersymmetry breaking pattern?
Motivation

- Low energy supersymmetry as a solution to the hierarchy problem.
- SUSY must be broken: soft terms - gaugino and scalar masses, A-terms etc.
- What does string theory predict for the supersymmetry breaking pattern?
- Moduli stabilisation and supersymmetry breaking closely related.
Motivation

- Low energy supersymmetry as a solution to the hierarchy problem.
- SUSY must be broken: soft terms - gaugino and scalar masses, A-terms etc.
- What does string theory predict for the supersymmetry breaking pattern?
- Moduli stabilisation and supersymmetry breaking closely related.
- Take the top down approach: study classes of string theory models with stabilised moduli and try to find firm predictions.
Review of Moduli Stabilisation

K. Suruliz (DAMTP, Cambridge)

July 2007
Most of the work done in context of Type IIB string theory.
Most of the work done in context of Type IIB string theory.

Consider compactifications on a Calabi-Yau orientifold, resulting in an $N = 1, d = 4$ theory.
Most of the work done in context of **Type IIB** string theory.

Consider compactifications on a Calabi-Yau orientifold, resulting in an $N = 1, d = 4$ theory.

Moduli appear in the effective 4D theory - massless scalar fields that are **experimentally excluded**.
Most of the work done in context of Type IIB string theory.

Consider compactifications on a Calabi-Yau orientifold, resulting in an $N = 1, d = 4$ theory.

Moduli appear in the effective 4D theory - massless scalar fields that are experimentally excluded.

Two types of moduli, coming from closed and open strings.
Most of the work done in context of Type IIB string theory.

Consider compactifications on a Calabi-Yau orientifold, resulting in an $N = 1, d = 4$ theory.

Moduli appear in the effective 4D theory - massless scalar fields that are experimentally excluded.

Two types of moduli, coming from closed and open strings.

Closed string moduli are divided into complex structure (shape) and Kähler (size) moduli.
Flux Compactifications and the KKLT Scenario

K. Suruliz (DAMTP, Cambridge)

July 2007
One may turn on RR (F_3) and NSNS (H_3) 3-fluxes on the internal manifold.
Flux Compactifications and the KKLT Scenario

- One may turn on RR (F_3) and NSNS (H_3) 3-fluxes on the internal manifold.
- Superpotential generated in the low energy theory (GVW superpotential)

$$W = \int G_3 \wedge \Omega, \quad G_3 = F_3 - \tau H_3$$
One may turn on RR (F_3) and NSNS (H_3) 3-fluxes on the internal manifold.

Superpotential generated in the low energy theory (GVW superpotential)

$$W = \int G_3 \wedge \Omega, \quad G_3 = F_3 - \tau H_3$$

This generically fixes all the complex structure moduli, the dilaton τ, as well as most open string moduli.
One may turn on RR (F_3) and NSNS (H_3) 3-fluxes on the internal manifold.

Superpotential generated in the low energy theory (GVW superpotential)

$$W = \int G_3 \wedge \Omega, \quad G_3 = F_3 - \tau H_3$$

This generically fixes all the complex structure moduli, the dilaton τ, as well as most open string moduli.

The Kähler moduli fixed by non-perturbative contributions to superpotential (KKLT scenario).
Obtained in [hep-th/0502058] (Balasubramanian, Berglund, Conlon and Quevedo) by taking into account leading order α' correction to Kähler potential K:

$$K = -2 \log(V + \xi)$$
Large Volume Constructions

- Obtained in [hep-th/0502058] (Balasubramanian, Berglund, Conlon and Quevedo) by taking into account leading order α' correction to Kähler potential K:

$$K = -2 \log(V + \xi)$$

- Large class of minima with different properties to KKLT ones. Most importantly: volume exponentially large and SUSY broken in an AdS minimum.
Obtained in [hep-th/0502058] (Balasubramanian, Berglund, Conlon and Quevedo) by taking into account leading order α' correction to Kähler potential K:

$$K = -2 \log(V + \xi)$$

Large class of minima with different properties to KKLT ones. Most importantly: volume exponentially large and SUSY broken in an AdS minimum.

Needs at least two Kähler moduli, T_b and T_s. The volume is

$$V \propto (T_b + T_b^*)^{3/2} - (T_s + T_s^*)^{3/2}$$
Large Volume Constructions

- Obtained in [hep-th/0502058] (Balasubramanian, Berglund, Conlon and Quevedo) by taking into account leading order α' correction to Kähler potential K:

$$K = -2 \log(V + \xi)$$

- Large class of minima with different properties to KKLT ones. Most importantly: volume exponentially large and SUSY broken in an AdS minimum.

- Needs at least two Kähler moduli, T_b and T_s. The volume is

$$V \propto (T_b + T_b^*)^{3/2} - (T_s + T_s^*)^{3/2}$$

- T_b overall volume, T_s small 'blow-up' cycle.
The superpotential is

\[W = W_0 + A_s e^{-a_s T_s} \left(+ A_b e^{-a_b T_b} \right) \]
The superpotential is

\[W = W_0 + A_s e^{-a_s T_s} (+ A_b e^{-a_b T_b}) \]

Note that a superpotential term for \(T_b \) is \textbf{not required} - perturbatively stabilised!
The superpotential is

\[W = W_0 + A_s e^{-a_s T_s} (A_b e^{-a_b T_b}) \]

Note that a superpotential term for \(T_b \) is \textbf{not required} - perturbatively stabilised!

Full scalar potential

\[V = \frac{e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{\xi}{\mathcal{V}^3} \]

(the axion in \(T_s \) fixes the middle sign)
The superpotential is

\[W = W_0 + A_s e^{-a_s T_s} (+ A_b e^{-a_b T_b}) \]

Note that a superpotential term for \(T_b \) is not required - perturbatively stabilised!

Full scalar potential

\[V = \frac{e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{\xi}{\mathcal{V}^3} \]

(the axion in \(T_s \) fixes the middle sign)

A minimum is found at

\[\tau_s = \mathcal{O}(1) \]
\[\mathcal{V} \sim e^{a_s \tau_s} \]
Works for $W_0 \sim 1$, unlike KKLT. Generalises to more than two moduli.
Works for $W_0 \sim 1$, unlike KKLT. Generalises to more than two moduli.

\[
\begin{align*}
m_s & \sim \frac{M_P}{\sqrt{V}} \\
m_{soft} & \sim m_{3/2} \sim \frac{M_PW_0}{V}.
\end{align*}
\]
Works for $W_0 \sim 1$, unlike KKLT. Generalises to more than two moduli.

$$m_s \sim \frac{M_P}{\sqrt{\mathcal{V}}}$$

$$m_{soft} \sim m_{3/2} \sim \frac{M_P W_0}{\mathcal{V}}.$$

With $W_0 \approx 1$ (no fine tuning), need $\mathcal{V} \sim 10^{15} l_s^6$ - this is easily obtainable. Large volume is a natural source of hierarchies.
Works for $W_0 \sim 1$, unlike KKL T. Generalises to more than two moduli.

\[
m_s \sim \frac{M_P}{\sqrt{V}}
\]

\[
m_{soft} \sim m_{3/2} \sim \frac{M_P W_0}{\sqrt{V}}.
\]

With $W_0 \approx 1$ (no fine tuning), need $V \sim 10^{15} l_s^6$ - this is easily obtainable. Large volume is a natural source of hierarchies.

With $V \sim 10^{15}$ (in l_s^6) get $m_s \sim 10^{11}$GeV. Intermediate scale scenario \implies no gauge coupling unification.
Assume local brane model giving the matter content of the MSSM: magnetised D7 branes.
Compactifications

Standard formalism for computing gravity mediated soft terms in SUGRA.
Soft Terms in Large Volume Compactifications

- Standard formalism for computing gravity mediated soft terms in SUGRA.
- Requires knowledge of:

\[K(h, \phi) = \hat{K}(h) + \tilde{K}_i(h)\phi_i\phi_i^*. \]

Also need gauge kinetic functions \(f_a \).
Standard formalism for computing gravity mediated soft terms in SUGRA.
Requires knowledge of:

\[K(h, \phi) = \hat{K}(h) + \tilde{K}_i(h)\phi_i \phi_i^*. \]

Also need gauge kinetic functions \(f_a \).
The F-terms quantify the amount of SUSY breaking:

\[F^m = e^{K/2} K^{m\tilde{n}} D_n \bar{W}. \]
Soft Terms in Large Volume Compactifications

- Standard formalism for computing gravity mediated soft terms in SUGRA.
- Requires knowledge of:

\[K(h, \phi) = \hat{K}(h) + \tilde{K}_i(h)\phi_i\phi_i^*. \]

Also need gauge kinetic functions \(f_a \).

- The F-terms quantify the amount of SUSY breaking:

\[F^m = e^{K/2}K^{m\bar{n}}D_nW. \]

- From there one computes

\[M_a = \frac{1}{2} \frac{F^m\partial_m f_a}{\text{Re} f_a}. \]

\[m_i^2 = (m_{3/2}^2 + V_0) - F^m\bar{F}^{\bar{n}}\partial_m\partial_{\bar{n}}\tilde{K}_i, \]

etc.
Suppose all branes wrap the same (small) cycle T_s.
- Suppose all branes wrap the same (small) cycle T_s.
- The gauge kinetic functions may be computed from the DBI action.

\[
f_a = \frac{T_s}{4\pi} + h_a(F)
\]
Suppose all branes wrap the same (small) cycle T_s.

The gauge kinetic functions may be computed from the DBI action:

$$f_a = \frac{T_s}{4\pi} + h_a(F)$$

Magnetic fluxes F responsible for chirality. Their presence gives unknown corrections to the gauge kinetic functions and Kähler potentials.
In the diluted flux limit $F = 0$ (i.e. $\tau_s \gg \epsilon$),

\[
\begin{align*}
M_i &= M \\
m_a &= \frac{M}{\sqrt{3}} \\
A &= -M \\
B &= -\frac{4M}{3}.
\end{align*}
\]
In the diluted flux limit $F = 0$ (i.e. $\tau_s \gg \epsilon$),

$$
M_i = M \\
m_a = \frac{M}{\sqrt{3}} \\
A = -M \\
B = -\frac{4M}{3}.
$$

Here $M = F^s/(2\tau_s)$.
In the diluted flux limit $F = 0$ (i.e. $\tau_s \gg \epsilon$),

\[
\begin{align*}
M_i &= M \\
ma &= \frac{M}{\sqrt{3}} \\
A &= -M \\
B &= -\frac{4M}{3}.
\end{align*}
\]

Here $M = F^s/(2\tau_s)$.

Introduce now perturbations due to corrections ϵ_α to \tilde{K}.

\[
\begin{align*}
M_i &= M(1 + \epsilon_i) \\
ma &= \frac{M}{\sqrt{3}}(1 + \epsilon_a) \\
A_{abc} &= -\frac{1}{\sqrt{3}}(ma + mb + mc)
\end{align*}
\]
The B-term condition cannot be satisfied and we effectively make B a free parameter, scanning over $\tan \beta$.

The B-term condition cannot be satisfied and we effectively make B a free parameter, scanning over $\tan \beta$.

Can now generate soft terms at high scale with uniform random fluctuations.
The B-term condition cannot be satisfied and we effectively make B a free parameter, scanning over $\tan \beta$.

Can now generate soft terms at high scale with uniform random fluctuations.

Evolve to M_Z using SoftSusy (B. Allanach).
The B-term condition cannot be satisfied and we effectively make B a free parameter, scanning over $\tan \beta$.

Can now generate soft terms at high scale with uniform random fluctuations.

Evolve to M_Z using **SoftSusy** (B. Allanach).

Make sure spectra satisfy constraints on $(g - 2)_{\mu}$, $BR(b \rightarrow s\gamma)$, m_h.
The B-term condition cannot be satisfied and we effectively make B a free parameter, scanning over $\tan \beta$.

Can now generate soft terms at high scale with uniform random fluctuations.

Evolve to M_Z using SoftSusy (B. Allanach).

Make sure spectra satisfy constraints on $(g - 2)_\mu$, $BR(b \to s\gamma)$, m_h.

Also check upper bound on Ωh^2 - there could be other contributions to dark matter besides the $\tilde{\chi}_1^0$, so ignore lower bound.
The B-term condition cannot be satisfied and we effectively make B a free parameter, scanning over $\tan \beta$.

Can now generate soft terms at high scale with uniform random fluctuations.

Evolve to M_Z using SoftSusy (B. Allanach).

Make sure spectra satisfy constraints on $(g - 2)_{\mu}, BR(b \to s\gamma), m_h$.

Also check upper bound on Ωh^2 - there could be other contributions to dark matter besides the $\tilde{\chi}_1^0$, so ignore lower bound.

Use micrOMEGAs to compute all of these.
The spectra with $m_\tilde{g} \approx 900\text{GeV}$ fixed in order to set overall scale, with 20% fluctuations at high scale.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.

LSP mostly bino but can have sizeable wino component.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.

- LSP mostly bino but can have sizeable wino component.
- Spectrum more ‘bunched’ - the particle masses have less time to run since the string scale is intermediate and approximate unification takes place there.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.

LSP mostly bino but can have sizeable wino component.

Spectrum more ’bunched’ - the particle masses have less time to run since the string scale is intermediate and approximate unification takes place there.

The gaugino mass ratio at the low scale is

\[M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6. \]

In mSUGRA one has 1 : 2 : 6.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.

LSP mostly bino but can have sizeable wino component.

Spectrum more 'bunched' - the particle masses have less time to run since the string scale is intermediate and approximate unification takes place there.

The gaugino mass ratio at the low scale is $M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6$. In mSUGRA one has $1 : 2 : 6$.

Gaugino mass ratios hold even if matter content not just MSSM.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.

LSP mostly bino but can have sizeable wino component.

Spectrum more 'bunched' - the particle masses have less time to run since the string scale is intermediate and approximate unification takes place there.

The gaugino mass ratio at the low scale is
\[M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6. \] In mSUGRA one has 1 : 2 : 6.

Gaugino mass ratios hold even if matter content not just MSSM.

Squark masses do not vary much when \(m_{\tilde{g}} \) is fixed. The slepton masses do.
On the whole fairly similar to an SPS1 type mSUGRA spectrum, but there are some important differences.

- LSP mostly bino but can have sizeable wino component.
- Spectrum more 'bunched' - the particle masses have less time to run since the string scale is intermediate and approximate unification takes place there.
- The gaugino mass ratio at the low scale is $M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6$. In mSUGRA one has $1 : 2 : 6$.
- Gaugino mass ratios hold even if matter content not just MSSM.
- Squark masses do not vary much when $m_{\tilde{g}}$ is fixed. The slepton masses do.
- Discrimination of models - two approaches. Counting observables and kinematic observables.
OS dilepton and trilepton events.
OS dilepton and trilepton events.

The number of dilepton (and thus trilepton) events varies a lot even when the overall spectrum mass scale is fixed - $m_{\tilde{g}} \approx 900 \text{GeV}$.
Many of the OS dileptons come from the decay chain
\[\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^\pm \ell^\mp \rightarrow l^\pm l^\mp \tilde{\chi}_1^0. \]
Many of the OS dileptons come from the decay chain
\[\tilde{\chi}_2^0 \rightarrow \tilde{l}^\pm l^\mp \rightarrow l^\pm l^\mp \tilde{\chi}_1^0. \]
Depending on the mass differences \(m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0} - m_{\tilde{l}^R}, m_{\tilde{l}^R} - m_{\tilde{\chi}_1^0} \), we may see many or few dileptons.
Many of the OS dileptons come from the decay chain
\(\tilde{\chi}^0_2 \rightarrow \tilde{l}^{\pm} l^{\mp} \rightarrow l^{\pm} l^{\mp} \tilde{\chi}^0_1. \)

Depending on the mass differences \(m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}, m_{\tilde{\chi}^0_2} - m_{\tilde{l}_R}, m_{\tilde{l}_R} - m_{\tilde{\chi}^0_1}, \) we may see many or few dileptons.

If there are not many dileptons, the spectrum will be hard to reconstruct as lepton observables are cleanest (\(\sim 90\% \) tagging efficiency for \(e, \mu \)).
We consider a spectrum with many OSSF dilepton events, so that the chain $\tilde{\chi}_2^0 \rightarrow \tilde{l}^\pm l^\mp \rightarrow l^\pm l^\mp \tilde{\chi}_1^0$ can be reconstructed.
Spectrum Reconstruction

- We consider a spectrum with many OSSF dilepton events, so that the chain $\tilde{\chi}_2^0 \rightarrow \tilde{l}^\pm l^\mp \rightarrow l^\mp l^\pm \tilde{\chi}_1^0$ can be reconstructed.
- The gluino is at $m_{\tilde{g}} = 909$ GeV.
We consider a spectrum with many OSSF dilepton events, so that the chain $\tilde{\chi}_2^0 \rightarrow \tilde{l}^\pm l^\mp \rightarrow l^\pm l^\mp \tilde{\chi}_1^0$ can be reconstructed.

The gluino is at $m_{\tilde{g}} = 909$ GeV.

Squark masses (all in GeV):

$$m_{\tilde{d}_L} = 800, m_{\tilde{u}_L} = 792, \ldots$$
We consider a spectrum with many OSSF dilepton events, so that the chain $\tilde{\chi}_2^0 \to \tilde{l}^\pm l^\mp \to l^\pm l^\mp \tilde{\chi}_1^0$ can be reconstructed.

The gluino is at $m_{\tilde{g}} = 909$ GeV.

Squark masses (all in GeV):

$$m_{\tilde{d}_L} = 800, m_{\tilde{u}_L} = 792, ...$$

The slepton and neutralino masses are

$$m_{\tilde{e}_R, \tilde{\mu}_R} = 270, ...$$

$$m_{\tilde{\chi}_1^0} = 233, m_{\tilde{\chi}_2^0} = 303, m_{\tilde{\chi}_3^0} = 460, m_{\tilde{\chi}_4^0} = 483.$$
We consider a spectrum with many OSSF dilepton events, so that the chain $\tilde{\chi}_2^0 \rightarrow \tilde{l}^\pm l^\mp \rightarrow l^\pm l^\mp \tilde{\chi}_1^0$ can be reconstructed.

The gluino is at $m_{\tilde{g}} = 909$ GeV.

Squark masses (all in GeV):

$$m_{\tilde{d}_L} = 800, m_{\tilde{u}_L} = 792, \ldots$$

The slepton and neutralino masses are

$$m_{\tilde{e}_R, \tilde{\mu}_R} = 270, \ldots$$

$$m_{\tilde{\chi}_1^0} = 233, m_{\tilde{\chi}_2^0} = 303, m_{\tilde{\chi}_3^0} = 460, m_{\tilde{\chi}_4^0} = 483.$$

The chargino masses are $m_{\tilde{\chi}_1^+} = 303, m_{\tilde{\chi}_2^+} = 480$.
Use the standard techniques: ll endpoint, qll endpoint and threshold, ql endpoint.
Use the standard techniques: \(ll \) endpoint, \(qll \) endpoint and threshold, \(ql \) endpoint.
Use the standard techniques: ll endpoint, qll endpoint and threshold, ql endpoint.

Generate 100fb^{-1} of data with backgrounds (except $W+$jets and $Z+$jets).
Use the standard techniques: \(ll\) endpoint, \(qll\) endpoint and threshold, \(ql\) endpoint.

Generate \(100 \text{fb}^{-1}\) of data with backgrounds (except \(W+\text{jets}\) and \(Z+\text{jets}\)).

Cuts are as in ATLAS TDR:

1. Four hard jets with \(P_T > 100, 50, 50, 50\) GeV.
2. Isolated lepton \(P_T > 10\) GeV.
3. \(E_T^{\text{miss}} > 0.2M_{\text{eff}}\), with

\[
M_{\text{eff}} = P_{T1} + P_{T2} + P_{T3} + P_{T4} + E_T^{\text{miss}}.
\]
Dilepton endpoint at

\[M_{ll}^{\text{max}} = \sqrt{\frac{(m_{\tilde{\chi}^0_2}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{\chi}^0_1}^3 - m_{\tilde{l}_R}^2)}{m_{\tilde{l}_R}^2}} \]
Dilepton endpoint at

\[M_{ll}^{\text{max}} = \sqrt{\frac{(m_{\tilde{\chi}_2}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^3 - m_{\tilde{\chi}_0}^2)}{m_{\tilde{l}_R}^2}} \]

Can be reconstructed with very good accuracy, ±0.15GeV.
qll, ql endpoints use the decay chain $\tilde{q}_L \rightarrow q\tilde{\chi}^0_2 \rightarrow q\tilde{l}^\pm l^\mp \rightarrow ql^\pm l^\mp \tilde{\chi}^0_1$.
• qll, ql endpoints use the decay chain $\tilde{q}_L \rightarrow q\tilde{\chi}_2^0 \rightarrow q\tilde{l}^{\pm}l^{\mp} \rightarrow ql^{\pm}l^{\mp}\tilde{\chi}_1^0$.

• Use lighter qll mass, since the hardest jet probably came from $\tilde{q}_R \rightarrow q\tilde{\chi}_1^0$.

- qll, ql endpoints use the decay chain $\tilde{q}_L \rightarrow q\tilde{\chi}_2^0 \rightarrow q\tilde{l}^\pm l^\mp \rightarrow ql^\pm l^\mp \tilde{\chi}_1^0$.

- Use lighter qll mass, since the hardest jet probably came from $\tilde{q}_R \rightarrow q\tilde{\chi}_1^0$.

- (Lighter) qll invariant mass has an endpoint at

$$M_{qll}^{max} = \sqrt{\frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{\chi}_2^0}^2}}$$
qll, ql endpoints use the decay chain $\tilde{q}_L \rightarrow q\tilde{\chi}_2^0 \rightarrow q\tilde{l}^{\pm} l^{\mp} \rightarrow ql^{\pm} l^{\mp} \tilde{\chi}_1^0$.

Use lighter qll mass, since the hardest jet probably came from $\tilde{q}_R \rightarrow q\tilde{\chi}_1^0$.

(Lighter) qll invariant mass has an endpoint at

$$M_{qll}^{\text{max}} = \sqrt{\frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{\chi}_2^0}^2}}$$

Smeared due to jet finding algorithm, combinatorics etc.
qll, ql endpoints use the decay chain $\tilde{q}_L \to q\tilde{\chi}_2^0 \to q\tilde{l}^{\pm}l^{\mp} \to ql^{\pm}l^{\mp}\tilde{\chi}_1^0$.

Use lighter qll mass, since the hardest jet probably came from $\tilde{q}_R \to q\tilde{\chi}_1^0$.

(Lighter) qll invariant mass has an endpoint at

$$M_{qll}^{max} = \sqrt{\frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{\chi}_2^0}^2}}$$

Smeared due to jet finding algorithm, combinatorics etc.

Heavier ql invariant mass should give endpoint at

$$M_{ql}^{max} = \sqrt{\frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{l_R}^2)}{m_{\tilde{\chi}_2^0}^2}}$$
Fit histograms using MINUIT and MINOS.
Fit histograms using MINUIT and MINOS.

Assuming that we can get rid of systematic errors, obtain

\[M_{ll}^{max} = 69.4 \pm 0.15 \text{GeV} \]
\[M_{qll}^{max} = 467.6 \pm 6.0 \text{GeV} \]
\[M_{ql}^{max} = 330.5 \pm 4.0 \text{GeV} \]
\[M_{qll}^{min} = 202.8 \pm 10.0 \text{GeV} \].
Fit histograms using MINUIT and MINOS.

Assuming that we can get rid of systematic errors, obtain

\[
\begin{align*}
M_{ll}^{max} &= 69.4 \pm 0.15 \text{GeV} \\
M_{qll}^{max} &= 467.6 \pm 6.0 \text{GeV} \\
M_{ql}^{max} &= 330.5 \pm 4.0 \text{GeV} \\
M_{qll}^{min} &= 202.8 \pm 10.0 \text{GeV}.
\end{align*}
\]

Now fit mass differences: this is done by random generation of masses for \(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{l}_R, \tilde{q}_L \), calculating \(M_{ll}^{max}, M_{qll}^{max}, M_{ql}^{max}, M_{qll}^{min} \) and using an \(e^{-\chi^2/2} \) probability distribution.
Spectrum Reconstruction V

- Can reconstruct mass differences well:

- χ^2 / ndf

- M2-M1 abs
 - Constant: 4.0 ± 248.3
 - Mean: 0.4 ± 567.7
 - Sigma: 0.1 ± 22.3

- LR-M1 abs
 - χ^2 / ndf: $105.1 / 61$
 - Constant: 6.8 ± 391.8
 - Mean: 0.02 ± 37.28
 - Sigma: 0.016 ± 1.621

- QL-M1 abs
 - χ^2 / ndf: $800.2 / 48$
 - Constant: 248.3 ± 4.0
 - Mean: 567.7 ± 0.4
 - Sigma: 22.3 ± 0.1

K. Suruliz (DAMTP, Cambridge)
SPECTRUM RECONSTRUCTION V

- Can reconstruct mass differences well:

![Histograms of mass differences](image)
Fitting the mass difference graphs gives

\begin{align*}
 m_{\tilde{\nu}_R} - m_{\tilde{\chi}_1^0} &= 37.3 \pm 1.6 \text{GeV} \\
 m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} &= 69.4 \pm 1.0 \text{GeV} \\
 m_{\tilde{q}_L} - m_{\tilde{\chi}_1^0} &= 568 \pm 22 \text{GeV}
\end{align*}
Fitting the mass difference graphs gives

\[m_{\tilde{l}_R} - m_{\tilde{\chi}_1^0} = 37.3 \pm 1.6 \text{GeV} \]
\[m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 69.4 \pm 1.0 \text{GeV} \]
\[m_{\tilde{q}_L} - m_{\tilde{\chi}_1^0} = 568 \pm 22 \text{GeV} \]

Can we discriminate this from a generic mSUGRA scenario?
Fitting the mass difference graphs gives

\[m_{\tilde{\ell}_R} - m_{\tilde{\chi}_1^0} = 37.3 \pm 1.6 \text{GeV} \]
\[m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 69.4 \pm 1.0 \text{GeV} \]
\[m_{\tilde{q}_L} - m_{\tilde{\chi}_1^0} = 568 \pm 22 \text{GeV} \]

Can we discriminate this from a generic mSUGRA scenario?
Answer: yes - use the ratio \(M_1 : M_2 : M_3 = 1 : 2 : 6 \).
In mSUGRA $m_\tilde{g} \approx 6m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\chi}^0_2} \approx 2m_{\tilde{\chi}^0_1}$.
In mSUGRA $m_{\tilde{g}} \approx 6m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\chi}^0_2} \approx 2m_{\tilde{\chi}^0_1}$.

Thus

$$\frac{m_{\tilde{g}} - m_{\tilde{\chi}^0_1}}{m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}} \approx 5.$$
Comparison with mSUGRA II

- In mSUGRA $m_\tilde{g} \approx 6m_{\tilde{\chi}_1}$ and $m_{\tilde{\chi}_2} \approx 2m_{\tilde{\chi}_1}$.
- Thus

 \[
 \frac{m_\tilde{g} - m_{\tilde{\chi}_1}}{m_{\tilde{\chi}_2} - m_{\tilde{\chi}_1}} \approx 5.
 \]

- In mSUGRA also have $\frac{m_{\tilde{q}_L}}{m_\tilde{g}} \lesssim 1$.
In mSUGRA $m\tilde{g} \approx 6m\tilde{\chi}_1^0$ and $m\tilde{\chi}_2^0 \approx 2m\tilde{\chi}_1^0$.

Thus
\[
\frac{m\tilde{g} - m\tilde{\chi}_1^0}{m\tilde{\chi}_2^0 - m\tilde{\chi}_1^0} \approx 5.
\]

In mSUGRA also have $\frac{m\tilde{q}_L}{m\tilde{g}} \lesssim 1$.

Thus expect
\[
\frac{m\tilde{q}_L - m\tilde{\chi}_1^0}{m\tilde{\chi}_2^0 - m\tilde{\chi}_1^0} \lesssim 5.
\]
In mSUGRA \(m_\tilde{g} \approx 6m_\tilde{\chi}_1 \) and \(m_\tilde{\chi}_2 \approx 2m_\tilde{\chi}_1 \).

Thus

\[
\frac{m_\tilde{g} - m_\tilde{\chi}_1}{m_\tilde{\chi}_2 - m_\tilde{\chi}_1} \approx 5.
\]

In mSUGRA also have \(\frac{m_\tilde{q}_L}{m_\tilde{g}} \lesssim 1 \).

Thus expect

\[
\frac{m_\tilde{q}_L - m_\tilde{\chi}_1}{m_\tilde{\chi}_2 - m_\tilde{\chi}_1} \lesssim 5.
\]

However, we measured

\[
\frac{m_\tilde{q}_L - m_\tilde{\chi}_1}{m_\tilde{\chi}_2 - m_\tilde{\chi}_1} = 8.11 \pm 0.31.
\]
Conclusions

- Performed detailed study of spectra and phenomenology of Large Volume models, quantifying uncertainties in high-energy soft terms.
Conclusions

- Performed detailed study of spectra and phenomenology of Large Volume models, quantifying uncertainties in high-energy soft terms.

- Distinctive pattern of gaugino masses
 \[M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6 \] which may be distinguished from mSUGRA and mirage mediation. This is true even if size of fluctuations increased from 20% to 40%.
Conclusions

- Performed detailed study of spectra and phenomenology of Large Volume models, quantifying uncertainties in high-energy soft terms.

- Distinctive pattern of gaugino masses
 \[M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6 \] which may be distinguished from mSUGRA and mirage mediation. This is true even if size of fluctuations increased from 20% to 40%.

- Phenomenology depends heavily on mass difference of \(M_1 \) and \(M_2 \) and the slepton masses.
Conclusions

- Performed detailed study of spectra and phenomenology of Large Volume models, quantifying uncertainties in high-energy soft terms.
- Distinctive pattern of gaugino masses $M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6$ which may be distinguished from mSUGRA and mirage mediation. This is true even if size of fluctuations increased from 20% to 40%.
- Phenomenology depends heavily on mass difference of M_1 and M_2 and the slepton masses.
- In favourable cases, we can measure (certainly in 3 years of LHC running) mass differences well enough to discriminate against other popular models.
Conclusions

- Performed detailed study of spectra and phenomenology of Large Volume models, quantifying uncertainties in high-energy soft terms.
- Distinctive pattern of gaugino masses \(M_1 : M_2 : M_3 = (1.5 - 2) : 2 : 6 \) which may be distinguished from mSUGRA and mirage mediation. This is true even if size of fluctuations increased from 20% to 40%.
- Phenomenology depends heavily on mass difference of \(M_1 \) and \(M_2 \) and the slepton masses.
- In favourable cases, we can measure (certainly in 3 years of LHC running) mass differences well enough to discriminate against other popular models.

Thank you for your attention