EW NLO Corrections to Pair Production of Top-squarks at the LHC

Monika Kollar, Maike Trenkel, Wolfgang Hollik

Max-Planck-Institut für Physik München (Werner-Heisenberg-Institut)

July 27, 2007 - SUSY07 Karslruhe

Introduction

Top-squark sector of the MSSM:

- in our calculation: R-parity conserving, MFV, real parameters
- large Yukawa coupling induces large L–R mixing

$$\mathcal{L} = -\left(\tilde{t}_{L}^{*}, \tilde{t}_{R}^{*}\right) \mathcal{M} \begin{pmatrix} \tilde{t}_{L} \\ \tilde{t}_{R} \end{pmatrix} = -\left(\tilde{t}_{1}^{*}, \tilde{t}_{2}^{*}\right) \begin{pmatrix} m_{\tilde{t}_{1}}^{2} & 0 \\ 0 & m_{\tilde{t}_{2}}^{2} \end{pmatrix} \begin{pmatrix} \tilde{t}_{1} \\ \tilde{t}_{2} \end{pmatrix}$$

with
$$\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta_{\tilde{t}} & \sin\theta_{\tilde{t}} \\ -\sin\theta_{\tilde{t}} & \cos\theta_{\tilde{t}} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}$$
 and

$$\mathcal{M} = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + c_{2\beta} (T_3 - Q s_W^2) M_Z^2 & m_t M_t^{LR} \\ m_t M_t^{LR} & M_{\tilde{t}_R}^2 + m_t^2 + Q c_{2\beta} s_W^2 M_Z^2 \end{pmatrix} \qquad M_t^{LR} = A_t - \mu / \tan \beta$$

lighter than 1st and 2nd generation squarks
 lightest squark in many scenarios

Motivation

squark pair production:

at hadron colliders via strong interactions

relatively large cross sections

top-squark:

lightest squark in many scenarios

popular candidate to search for at hadron colliders

- $\sigma_{_{ ilde{f} ilde{t}^*}}$ depends essentially on the stop mass

extract stop mass directly from the cross section measurement

Top-squark pair production at Born level

at hadron colliders:

diagonal at LO

$$\tilde{t_1}\tilde{t_1}^*$$

 $\tilde{t}_2\tilde{t}_2^*$

study numerically

gg fusion Low *x*

qq annihilation High *x*

EW contributions (Bozzi et al. 2005) neglected

Higher order corrections - Status

at hadron colliders:

→ QCD corrections are largest

SUSY-QCD NLO

(Beenakker et al. 1996, Beenakker et al. 1997)

- still diagonal
- theory prediction: Prospino
- Tevatron: no mass limit
- → also EW corrections have to be investigated

still missing

SUSY-EW corrections to $\sigma_{ ilde{tit}^*}$

Characteristics:

- not possible to separate SM-like corrections, result not UV finite
- not possible to split SUSY-QED corrections from the weak part
- → full EW corrections: # of diagrams > 500
 - → treatment with help of FeynArts & FormCalc
- threshold effects from heavy stop and two sbottom pair loop contributions sources: SSVV channel, s-channel Higgs exchange (contributions from squark pairs of 1st and 2nd generation suppressed)

UV singularities

Treatment of UV singularities:

renormalization:

- renormalization of external quark/squark fields & stop mass
- no photon-gluon interaction at 1-loop

no gluon field renormalization

- Ward Identity: vertex + ren. quark/squark fields = UV finite
 - no α_s renormalization
- no mixing angle renormalization since $ilde{t} ilde{t}^*$ diagonal

counter terms:

UV finite result

IR singularities

Treatment of IR singularities:

- origin: massless photon in the loop
- regularization by photon mass parameter λ (terms $\sim \ln \lambda$)
- Bloch-Nordsieck:
 - in the soft limit $(k \to 0)$ virtual and real photons are undistinguishable
 - sum of virtual and real corrections is **IR** finite (independent of λ)

need photon bremsstrahlung

IR singular:

IR finite:

Collinear effects

Collinear/mass singularities

- origin: light initial state quarks radiating a photon
- in the collinear limit: $p.k = p^0k^0(1-\cos\theta) \rightarrow 0$ for $m_a=0$
- regularization by keeping quark mass in the loop integrals
- m_q not very well defined (terms ~ $\ln m_q^2/s$, ~ $\ln^2 m_q^2/s$)

photon in the loop

Sudakov double logs cancel in the sum of virtual and real corrections

single logs remain

 \rightarrow factorization

Z,W in the loop

- Sudakov double logs (terms ~ $\ln^2 m_Z^2/s$, ~ $\ln^2 m_W^2/s$)
- not cancelled by the real corrections (different final state)

double logs remain

 \rightarrow large negative contributions

IR singularities because of gluons

gluon in the loop

- IR singularities related to gluon
- Abelian-like: mass regularization
- photon bremsstrahlung cancels only the photonic IR singularities

need gluon bremsstrahlung

of
$$\mathcal{O}(\alpha \alpha_S^2)$$

QCD-EW interference

need complete QCD-EW interference

of
$$\mathcal{O}(\alpha \alpha_S^2)$$

QCD corrections to EW Born (additional IR finite boxes)

Treatment of real corrections

Phase space slicing:

soft part: $E_{\gamma} \leq \Delta E$

collinear part: $E_{\nu} > \Delta E \quad \theta_{f\nu} \leq \Delta \theta$

- → contain singularities
- → handled analytically using approximations

hard, non-collinear part:

$$E_{\gamma} > \Delta E$$
 $\theta_{f\gamma} > \Delta \theta$

- → no singularities
- → calculated numerically using Monte Carlo

Subtraction:

$$\int d\Phi_1 \sum_{\lambda\gamma} \left| \mathcal{M}_1 \right|^2 = \int d\Phi_1 \left(\sum_{\lambda\gamma} \left| \mathcal{M}_1 \right|^2 - \left| \mathcal{M}_{\text{sub}} \right|^2 \right) + \int d\Phi_1 \left| \mathcal{M}_{\text{sub}} \right|^2$$

singular

no singularities

analytically

Hadronic cross section

Factorization theorem:

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, Q) f_j(x_2, Q) \hat{\sigma}_{ij}(p_1, p_2, Q)$$

$$p_{1,2} = X_{1,2} P_{1,2}$$

- short-distance effects: partonic cross section of the hard process ightharpoonup $\hat{\sigma}$
- long-distance effects: $\rightarrow f(x,Q)$ parton distributions functions (PDFs)
- collinear ISR is a long-distance effect (included in the data from which PDFs are extracted)

remaining mass singularities $\sim \ln m_a^2$

- absorb into PDFs
- subtract from $\hat{\sigma}$

result becomes:

- independent of m_a
- dependent on factorization scale Q $(Q = \mu_{\text{ren}} = 2m_{\tilde{t}})$

PDFs at NLO QED

PDFs at NLO QED

- needed for a consistent treatment
- DGLAP evolution equations have to be modified
- determined in the same factorization scheme as $\hat{\sigma}$ to reduce dependence on Q

MRST2004QED

- Martin et al. 2004
- QED NLO in DIS scheme
- however: QCD NLO in PDFs leads to overestimation of Q dependence

non-zero photon density in the proton

Photon-induced top-squark production

photon-induced hadronic contribution

- zero at LO because of vanishing photon density in the proton
- becomes non-zero at NLO since non-zero photon density in the proton
- gluon-photon contributions are NLO QED (the NLO effects enter via PDFs)

 quark-photon contributions are NNLO due to additionnal collinear effects in the partonic cross section (not included in the calculation)

gluon-photon channel

 γg is comparable in size with gg and $q\overline{q}$ corrections

cannot be neglected

Numerical results: total hadronic σ

apply kinematic cuts to obtain realistic result: p_{τ} > 200 GeV and η < 2.5

scenario	prod. channel	σ_{LO} [fb]	$\sigma_{NLO} - \sigma_{LO}$ [fb]	$\delta = \sigma_{NLO}/\sigma_{LO} - 1$
SPS 1a	qq	220	-9.65	total:
$(m_{\tilde{t}_1} = 376.2 \text{ GeV})$	gg	1444	-15.4	0.24%
1	gγ		29.0	
SPS 1a'	q q	436	-11.5	total:
$(m_{\tilde{t}_1} = 322.1 \text{ GeV})$	gg	3292	-14.6	0.87%
-1	gγ		58.5	
SPS 2	qq	1.16	-0.089	total:
$m_{\tilde{t}_1} = 1005.7 \text{ GeV}$	gg	2.97	-0.030	0.84%
-	gγ		0.155	
SPS 5	qq	2870	-13.2	total:
$(m_{\tilde{t}_1} = 203.8 \text{ GeV})$	gg	31960	499	2.6%
•	gγ		405	

NLO EW effects: $\sim 1\% \rightarrow \text{negligible}$ uncertainty from NLO QCD PDFs $\sim 10\%$

NLO EW have small effects on total hadronic cross section

Numerical results: distributions

 p_{τ} [GeV]

differential hadronic cross sections / distributions in p_T and invariant mass for SPS 1a

- $gg + g\gamma$ dominate for low p_T and low $\sqrt{\hat{s}}$, opposite signs
- $q\overline{q}$ takes over for high $p_{\scriptscriptstyle T}$ and high $\sqrt{\hat{s}}$

relative correction δ = $\sigma_{\rm NLO}/\sigma_{\rm LO}$ – 1

- increases in size with $p_{\scriptscriptstyle T}$ and $\sqrt{\hat{s}}$ and becomes negative
- mass logs from collinear photon radiation
- large double logs from W, Z
 (not cancelled by real corrections)
- reaches 15–20% level
 - ightarrow relevant for high $p_{\scriptscriptstyle T}$ and high $\sqrt{\hat{s}}$

Variation of MSSM parameters

– we have studied the effects of variation of SUSY parameters: tan β , μ , M_{O3} , M_1 , M_2 , M_3

Example:

- variation of $tan \beta$ in range 1–40
- impact on the SUSY-EW corrections to the total cross section: few %

Variation of MSSM parameters (cont.)

2nd example:

- variation of M_{O3} in range 200–1000 GeV
- impact on the SUSY-EW corrections to the total cross section: few %

- resonance effects coming from heavy Higgs H^0 and light neutralinos:

Conclusions & Outlook

Top-squark pair production

- 1-loop picture completed
- NLO EW contributions are negligible for total cross sections
- but sizeable for distributions at high $ho_{ au}$ and high $\sqrt{\hat{s}}$

Next steps

- combine EW and QCD
- include into standard MC generators