Determining the WIMP Mass from Direct Dark Matter Detection Data

Chung-Lin Shan

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

SUSY 2007, Karlsruhe, Germany
July 27, 2007

in collaboration with M. Drees

Reconstructing the velocity distribution function of WIMPs
 Deriving $f_1(v)$ from the scattering spectrum
 Reconstructing $f_1(v)$ from experimental data

Determining the WIMP mass

Summary
Deriving $f_1(v)$ from the scattering spectrum

- Differential rate for elastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = A F^2(Q) \int_{v_{\text{min}}}^{\infty} \left[\frac{f_1(v)}{v} \right] dv$$

Here

$$v_{\text{min}} = \alpha \sqrt{Q}$$

is the minimal incoming velocity of incident WIMPs that can deposit the energy Q in the detector.

$$A \equiv \frac{\rho_0 \sigma_0}{2m_\chi m_r^2} \quad \alpha \equiv \sqrt{\frac{m_N}{2m_r^2}} \quad m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$

- ρ_0: WIMP density near the Earth
- σ_0: total cross section ignoring the form factor suppression
- $F(Q)$: elastic nuclear form factor
Deriving $f_1(v)$ from the scattering spectrum

- Normalized one-dimensional velocity distribution function
 \[
 f_1(v) = \mathcal{N} \left\{ -2Q \cdot \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] \right\}_{Q=v^2/\alpha^2}
 \]
 \[
 \mathcal{N} = \frac{2}{\alpha} \left\{ \int_0^\infty \frac{1}{\sqrt{Q}} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ \right\}^{-1}
 \]

- Moments of the velocity distribution function
 \[
 \langle v^n \rangle = \mathcal{N}(Q_{\text{thre}}) \left(\frac{\alpha^{n+1}}{2} \right) \left[2 Q_{\text{thre}}^{(n+1)/2} \frac{dR}{dQ} \right]_{Q=Q_{\text{thre}}} + (n + 1) I_n(Q_{\text{thre}})
 \]
 \[
 \mathcal{N}(Q_{\text{thre}}) = \frac{2}{\alpha} \left[\frac{2 Q_{\text{thre}}^{1/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right) \right]_{Q=Q_{\text{thre}}} + I_0(Q_{\text{thre}}) \right\}^{-1}
 \]
 \[
 I_n(Q_{\text{thre}}) = \int_{Q_{\text{thre}}}^{\infty} Q^{(n-1)/2} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ
 \]

[M. Drees and C. L. Shan, JCAP 0706, 011]
Reconstructing $f_1(v)$ from experimental data

- Experimental data
 \[Q_n - \frac{b_n}{2} \leq Q_{n,i} \leq Q_n + \frac{b_n}{2} \quad i = 1, 2, \cdots, N_n, \ n = 1, 2, \cdots, B \]

- Theoretically predicted scattering spectrum

C. L. Shan, Universität Bonn
Determining the WIMP Mass from DDMD Data
Reconstructing $f_1(v)$ from experimental data

- Ansatz: in the nth Q-bin

$$
\left(\frac{dR}{dQ} \right)_n \equiv \left(\frac{dR}{dQ} \right)_{Q \approx Q_n} = \tilde{r}_n e^{\kappa_n (Q - Q_n)} \equiv r_n e^{\kappa_n (Q - Q_{s,n})}
$$

$$
\tilde{r}_n \equiv \left(\frac{dR}{dQ} \right)_{Q = Q_n}
$$

$$
r_n \equiv \frac{N_n}{b_n}
$$

- Recoil spectrum at $Q = Q_n$

$$
\tilde{r}_n = \frac{N_n}{b_n} \left(\frac{\kappa_n}{\sinh \kappa_n} \right)
$$

$$
\kappa_n \equiv \left(\frac{b_n}{2} \right) k_n
$$

- Logarithmic slope and shifted point in the nth Q-bin

$$
\overline{Q}_n - Q_n = \frac{b_n}{2} \left(\coth \kappa_n - \frac{1}{\kappa_n} \right)
$$

$$
\overline{Q}_n = \frac{1}{N_n} \sum_{i=1}^{N_n} Q_{n,i}
$$

$$
Q_{s,n} = Q_n + \frac{1}{\kappa_n} \ln \left(\frac{\sinh \kappa_n}{\kappa_n} \right)
$$
Reconstructing $f_1(v)$ from experimental data

- Reconstructing the one-dimensional velocity distribution

$$f_{1,r}(v_s,\mu) = \mathcal{N} \left[\frac{2Q_{s,\mu}r_\mu}{F^2(Q_{s,\mu})} \right] \left[\frac{d}{dQ} \ln F^2(Q) \right]_{Q=Q_{s,\mu}} - k_\mu$$

$$v_{s,\mu} = \alpha \sqrt{Q_{s,\mu}}$$

$$\mathcal{N} = \frac{2}{\alpha} \left[\sum_a \frac{1}{\sqrt{Q_a} F^2(Q_a)} \right]^{-1}$$

- Determining the moments of the velocity distribution

$$\langle v^n \rangle = \alpha^n \left[\frac{2Q_{thre}^{1/2}r_{thre}}{F^2(Q_{thre})} + I_0 \right]^{-1} \left[\frac{2Q_{thre}^{(n+1)/2}r_{thre}}{F^2(Q_{thre})} + (n + 1)I_n \right]$$

$$I_n = \sum_a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

$$r_{thre} = \left(\frac{dR}{dQ} \right)_{Q=Q_{thre}}$$

[M. Drees and C. L. Shan, JCAP 0706, 011]
Determining the WIMP mass

- Using two different target nuclei

\[
\langle v^n \rangle = \alpha^n_X \left[\frac{(n+1)I_{n,X}}{I_{0,X}} \right] = \alpha^n_Y \left[\frac{(n+1)I_{n,Y}}{I_{0,Y}} \right]
\]
Determining the WIMP mass

- Using two different target nuclei

\[\langle v^n \rangle = \alpha^n_X \left[\frac{(n+1)I_{n,X}}{I_{0,X}} \right] = \alpha^n_Y \left[\frac{(n+1)I_{n,Y}}{I_{0,Y}} \right] \]

- WIMP mass

\[m_\chi = \sqrt{m_X m_Y - m_X R_n} \]

\[R_n = \frac{\alpha_Y}{\alpha_X} = \left(\frac{I_{n,X}}{I_{0,X}} \cdot \frac{I_{0,Y}}{I_{n,Y}} \right)^{1/n} \quad (n \neq 0, -1) \]

- 1-\(\sigma\) statistical error

\[\sigma(m_\chi) = \frac{R_n \sqrt{m_X/m_Y} |m_X - m_Y|}{\left(R_n - \sqrt{m_X/m_Y} \right)^2} \]

\[\times \frac{1}{|n|} \left[\frac{\sigma^2(I_{n,X})}{I_{n,X}^2} + \frac{\sigma^2(I_{0,X})}{I_{0,X}^2} - 2\text{cov}(I_{0,X}, I_{n,X}) + \frac{I_{0,X} I_{n,X}}{I_{0,X} I_{n,X}} \right]^{1/2} \]

C. L. Shan, Universität Bonn Determining the WIMP Mass from DDMD Data
Determining the WIMP mass

- 1-σ statistical error for different combinations

 $(1 - 200 \text{ keV}, \ n = 1, \ 25 + 25 \text{ events})$
Determining the WIMP mass

- Reproduced WIMP mass

 \[(1 - 200 \text{ keV}, n = 1, ^{76}\text{Ge} + ^{28}\text{Si}, 25 + 25 \text{ events}) \]

\[Q_{\text{max}} = 200 \text{ keV}, Q_{\text{min}} = 1 \text{ keV, } n = 1, 25 + 25 \text{ events, Ge-76 + Si-28} \]
Determining the WIMP mass

- Reproduced WIMP mass

 \((1 - 200 \text{ keV}, n = 1, ^{76}\text{Ge} + ^{28}\text{Si}, 250 + 250 \text{ events})\)

\[Q_{\text{max}} = 200 \text{ keV}, Q_{\text{min}} = 1 \text{ keV}, n = 1, 250 + 250 \text{ events, Ge-76 + Si-28} \]
Summary
Summary

- By using experimental data with different detector materials we can determine the WIMP mass.
Summary

- By using experimental data with different detector materials we can determine the WIMP mass.

- The larger the mass difference between two target nuclei, the smaller the statistical error will be.
Summary

- By using experimental data with different detector materials we can determine the WIMP mass.

- The larger the mass difference between two target nuclei, the smaller the statistical error will be.

- Our method is model-independent and needs only measured recoil energies.
Summary

- By using experimental data with different detector materials we can determine the WIMP mass.

- The larger the mass difference between two target nuclei, the smaller the statistical error will be.

- Our method is model-independent and needs only measured recoil energies.

- With 200 keV maximal measuring energy and 25 events from each experiment, we can already extract meaningful information about the WIMP mass.
A championship for finding new particle(s) between direct Dark Matter detection and collider experiments has been started.
Summary

A championship for finding new particle(s) between direct Dark Matter detection and collider experiments has been started.

Thank you very much for your attention.