Entropy and abundance criteria to constrain susy models with dark matter

Luis Cabral,1 Myriam Mondragón,2 Lukas Nellen,3 Dario Núñez,3 Roberto Sussmann,3 Jesús Zavala3

1CIIDET \hspace{2cm} 2IF-UNAM \hspace{2cm} 3ICN-UNAM

\textbf{SUSY 2007}
Motivation

- Growing evidence for the existence of dark matter
- Neutralinos (LSP) one of the best candidates
- Little information on galactic halo thermodynamic properties
- Try to combine knowledge of astrophysics and cosmology to get an independent constraint for models with dark matter
 - Use abundance criterion
 - Define an entropy criterion
 - Combine the two, apply it to msugra
- Compatibility of abundance and entropy criteria
 \[\Rightarrow \text{constraint on susy models with dark matter} \]
Abundance criterion

Standard approach: Boltzmann equation, after "freeze out" neutralino number is constant

\[\Omega_\chi \approx 1/\langle \sigma v \rangle, \]

where \(\langle \sigma v \rangle \) is the thermally averaged cross section times the relative velocity of the LSP annihilation pair.

Exact solution using MicrOmegas, assuming most DM is LSP. Relates \(\Omega_\chi h^2 \) to parameters of susy model.

Belanger, Kraml, Pukhov; Belanger et al
Entropy Criterion

Another way to set a constraint equation by entropy considerations. Consider neutralino gas in two stages of evolutions:

freeze-out era
present era

Initial and final states taken in equilibrium.

Entropy expression from microcanonical ensemble in “mean field” approximation in terms of phase space volume:

\[s = \ln \left[\frac{(2mE)^{3/2}}{(2\pi \hbar)^3} \frac{V}{V} \right] , \]

where \(V \) and \(E \) are local average values of volume and energy.

Cabral-Rosetti, Hernandez, Sussman
Change in entropy between initial \((s_f, x_f, n_f)\) and final states \((s^{(h)}, x^{(h)}, n^{(h)})\)

\[
s^{(h)} - s_f = \ln \left[\frac{n_f}{n^{(h)}} \left(\frac{x_f}{x^{(h)}} \right)^{3/2} \right].
\]

where \(x_f = m_\chi / T_f\),

\(m_\chi\) is the neutralino mass and \(T_f\) is the temperature of the system at freeze-out

\(n\) number density of particles, \(s\) entropy

Today: centre of halos.
Rewrite with observables

Relate n_f with present day cosmological parameters like Ω_0 and h.

Taking as an approximation:

$$n_f = n_0 (1 + z_f)^3$$

Entropy per particle for a photon gas at freeze-out and the one today are proportional to the cube of the temperature of the system at the corresponding epoch:

$$g_\ast_f S_f = g_\ast_0 S_0 (1 + z_f)^3$$

g_\ast degrees of freedom, known function of $x = m_\chi / T$

z redshift
Observables

\[n_f = \frac{g_{*f}(x_f)}{g_{*0}(x_0^{\text{CMB}})} \left[\frac{T_f}{T_0^{\text{CMB}}} \right]^3 = n_0 \frac{g_{*f}(x_f)}{g_{*0}(x_0^{\text{CMB}})} \left[\frac{x_0^{\text{CMB}}}{x_f} \right]^3 \]

where \(x_0^{\text{CMB}} \equiv \frac{m}{T_0^{\text{CMB}}} = 4.29 \times 10^{12} \text{ m/GeV} \), with \(T_0^{\text{CMB}} = 2.7 \text{ K} \)

At freeze-out we can consider the halo as a MB neutralino gas:

\[\rho_f = m_\chi n_\chi \left(1 + \frac{3}{2 x_f} \right), \quad p_f = \frac{m_\chi n_\chi}{x_f}, \quad s_f = \left[\frac{\rho + p}{n T} \right]_f = \frac{5}{2} + x_f, \]

\(\rho \) density, \(p \) pressure, \(T \) temperature
Today $n_0/n_c^{(h)} = \rho_0/\rho_c^{(h)}$ and $\rho_0 = \rho_{\text{crit}} \Omega_0 h^2$

Collecting results we get a theoretical expression for the entropy:

$$s_c^{(h)}|_{\text{th}} = \frac{5}{2} + x_f + \ln \left[\frac{g_*(x_f)}{g_*0(x_0^{\text{CMB}})} \frac{h^2 \Omega_0}{(x_f x_c^{(h)})^{3/2}} \rho_{\text{crit}} \rho_c^{(h)} \right]$$

which depends on initial state x_f, observable cosmological parameters Ω_0, h and on generic state variables associated to the present halo structure $x_c^{(h)}$, and $\rho_c^{(h)}$.
Assumption of MB statistics does not apply to self-gravitational collision-less system.

An exactly isothermal halo is not a realistic model: its total mass diverges. Distribution function → infinite particle velocities.

More realistic halo models use “energy truncated” (ET) distribution functions, with maximal “cut off” velocity.

Binney, Tremaine; Padmanabhan; Katz, Horowitz, Dekel; Katz; Magliocchetti, Pugacco, Vesperini
Empirical estimate of entropy

Take equation for entropy, restrict phase space volume to the actual range of momenta (i.e. put maximal escape velocity) Assume a relation of the form

\[v_e^2(0) = 2 |\Phi(0)| \approx \alpha \sigma_{(h)}^2(0), \]

where \(\Phi(r) \) is the newtonian gravitational potential, and \(\alpha \) is a proportionality constant

We get empirical expression for the entropy

\[
\begin{align*}
S_c^{(h)}|_{em} & \approx \ln \left[\frac{m^4 v_e^3}{(2\pi \hbar)^3 \rho_{(h)}^{(h)}} \right] \\
& = 89.17 + \ln \left[\left(\frac{m}{\text{GeV}} \right)^4 \left(\frac{\alpha}{x_c^{(h)}} \right)^{3/2} \frac{\text{GeV/cm}^3}{\rho_{c}^{(h)}} \right],
\end{align*}
\]

where we used \(x_c^{(h)} = c^2 / \sigma_{(h)}^2(0) \).
Entropy constraint II

Equating the theoretical and the empirical estimates for the entropy per particle we finally obtain

\[\ln(\Omega_\chi h^2) = 10.853 - x_f + \ln \left[\frac{(x_f \alpha)^{3/2} m_\chi g^*_0 (x^\text{CMB})}{g^*_f (x_f)} \right], \]

\(\alpha \) is the proportionality constant between the escape and dispersion velocities at the center of the halo.

Another constraint equation relating \(\Omega_\chi h^2 \) and observables.
More on α

α parametrizes our ignorance of the correct mechanical-statistics treatment of non-extensive systems formed by dark matter.

Assume spherical dark matter halo with a constant density core in the center, then the dark matter density profile follows the Navarro-Frenk-White (NFW) profile, and then it has a cut-off:

$$\rho(y) = \begin{cases}
\rho_c & \text{if } y < y_c \\
\frac{\delta_0 \rho_0}{y(1+y)^2} & \text{if } y_c \leq y \leq y_v \\
0 & \text{if } y > y_v
\end{cases}$$

ρ_c is the constant central density of the core, $y = r/r_s$, $y_c = r_c/r_s$, $y_v = r/r_v$, r_s is a scale radius, r_c is the core radius and r_v is the virial radius; ρ_0, δ_0 and r_s are parameters that define the NFW profile.
For a model without core, all these parameters can be given by a series of well-established formulas

\[\delta_0 = \frac{\Delta c^3}{3 \left[\ln(1 + c) - c/(1 + c) \right]}, \]

\[\rho_0 = \rho_{\text{crit}} \Omega_0 h^2 = 253.8 \, h^2 \, \frac{M_\odot}{\text{kpc}^3}, \]

where \(c = r_s/r_v \), \(\rho_{\text{crit}} \) is the critical density for closure in an Einstein-de Sitter Universe (central value) \(\Omega_0 \) is the ratio of the total density of the Universe today \(\Omega_0 = 1, \quad \Delta \sim 100 \) for a \(\Lambda \text{CDM} \) model

Lokas, Hoffman; Lokas Navarro, Frenk, White; Mo, Mao, White; Lokas, Mamon; Zavala et al.
NFW density profile is defined by two parameters:

- a “size” parameter r_{v}
- a concentration parameter c

\[
 r_{v} = \left(\frac{3M_{v}}{4\pi \Delta \rho_{0}} \right)^{1/3},
\]

\[
 c_{0} \approx 62.1 \left(\frac{M_{v}h}{M_{\odot}} \right),
\]

both depend on total mass contained in the halo M_{v}. c_{0} fit for central value of concentration, in numerical studies it has a scatter

Bullock et al
We use these eqs to describe real dark matter with only one free parameter M_v.

Model for dark matter dominated systems

From previous expressions \rightarrow analytical formula for α

To compute: need values for r_v, r_s and r_c

use an observational sample of galaxies corresponding to dark matter dominated systems

$$16.4 \leq \alpha \leq 27.8$$

Conservative estimate
Apply to msugra

We have the AC and EC \rightarrow compute relic abundance, see where they coincide

Take simple version of msugra to test the method:

- fix $A_0 = 0$ and $\text{sgn } \mu = +$
- vary $m_{1/2}, m_0$ and $\tan \beta$

see where they are compatible
Bulk and coannihilation regions

\[\tan \beta = 10 \]

\[\tan \beta = 50. \]

Allowed regions in the parameter space for AC (red) and EC (blue) criteria for the mSUGRA model with
\[A_0 = 0 \quad \text{and} \quad \text{sgn } \mu = +. \]
Focus point

\[\tan \beta = 10 \]

\[\tan \beta = 50. \]

Allowed regions in the parameter space for AC (red) and EC (blue) criteria for the mSUGRA model with

\[A_0 = 0 \quad \text{and} \quad \text{sgn} \, \mu = +. \]
The lightest Higgs M_{Higgs} mass vs the LSP mass m_{χ}, the dashed line indicates the present experimental limit on M_{Higgs}.
$A_0 \neq 0$

\[
\tan \beta = 10 \\
\tan \beta = 50.
\]

Allowed regions in the parameter space for AC (red) and EC (blue) criteria for the mSUGRA model with

$A_0 = 1000 \text{ GeV}$ and \(\text{sgn} \mu = +\).
Conclusions

- Through entropy considerations we get a constraint equation for Ωh^2 from cosmological/astrophysical considerations.
- By requiring the AC and EC criteria to coincide we can constrain parameter space of interesting dark matter susy models:
 - example simple version of msugra
 - \Rightarrow large $\tan \beta$
 - $\text{LSP} > 150 \text{ GeV}$
- Also, knowledge of LSP can give us feedback on astrophysical considerations to model dark matter halos
- Can be applied to any kind of dark matter
- Can be applied to any model