

SUSY

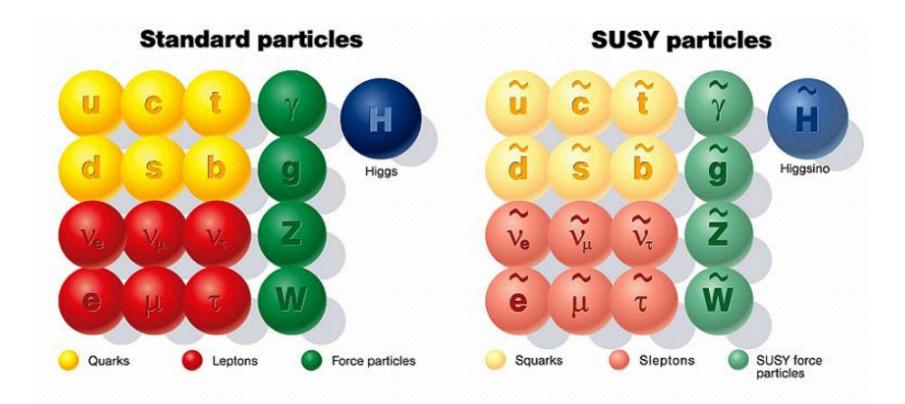
2017年四月七日

澤田龍,東大ICEPP

新学術領域研究会 新テラスケール2017

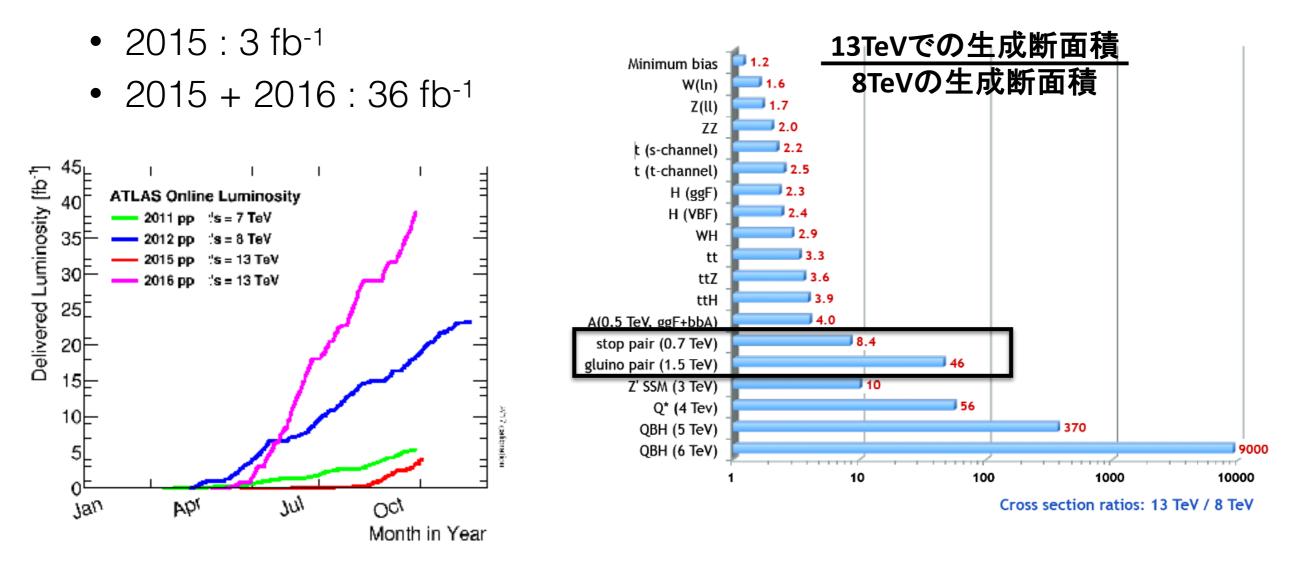
- イントロダクション
- Moriondまとめ
- イベント超過についてのおさらい
- ・まとめ

標準理論と新物理の可能性


- 標準理論は高い精度で検証が行われており、今のところ有意なズレは見つ かっていない。
 - 標準理論には暗黒物質を説明する粒子は存在しない。
 - 階層性問題
 - 3-4 o程度のズレはあり、新物理による可能性もある。

AMS-02の結果は~1TeV程度のダー
 クマターを示唆

- Fermionとbosonの間の対称性
 - スピンが1/2ずれたSM粒子のパートナーを導入
- 階層性問題はFermionとbosonのループ補正のより解決される
- 安定な中性SUSY粒子がダークマターの候補
- Gauge couplingが10¹⁶GeVで統一される
 - SMではそうならない


SUSY search

• 直接探索

- Energy frontierで生成されるSUSY粒子崩壊物の特徴的なパターンを探す。
- 間接探索
 - Intensity frontierでの探索
 - 低エネルギー現象を精密測定し、SMからのズレを探す。
 - 稀崩壊の探索

SUSY search @ LHC

- 13 TeVでのデータ取得が2015年よりスタート
- 2016年では、安定したビームが供給され予定以上のデータを取得

 13 TeVの2015+2016の結果が出てくるMoriondと夏のconferenceでの 発表が注目される。

• Squark/Gluino

- 0-lepton + jets
- 1-lepton + jets
- 2-lepton + jets
- photon + jets
- tau + jets
- stop
- Electroweakino
- Long-lived
 - Disappearing track
 - Displaced vertex
- RPV

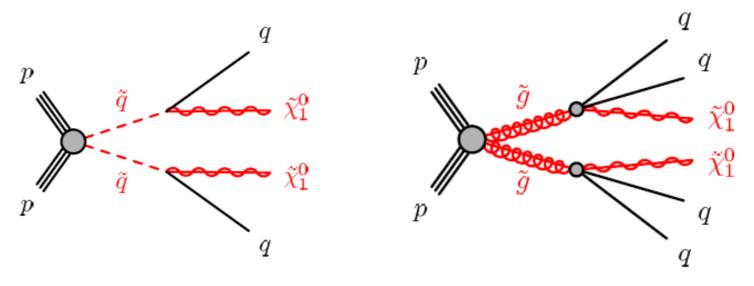
• Squark/Gluino

- 0-lepton + jets
- 1-lepton + jets
- 2-lepton + jets
- photon + jets
- tau + jets
- stop
- Electroweakino
- Long-lived
 - Disappearing track
 - Displaced vertex
- RPV

- ・なぜSUSYがまだ見えていないか
 - ・Squark/Gluinoが重い?
 - ・感度を上げていく (統計、新たな変数、BGの推定方)

・質量固有状態が縮退?

- ・終状態に多くのtrackを要求しない解析 (e.g. ISR +
 ET^{miss} + ...)
- ・RPVのために*E*T^{miss}が小さい ?
 - *E*^{*miss*}を要求しない探索
- ・まだ探索されていない終状態


SUSY signature @ LHC

• Squark/Gluino

- 0-lepton + jets
- 1-lepton + jets
- 2-lepton + jets
- photon + jets
- tau + jets
- stop
- Electroweakino
- Long-lived
 - Disappearing track
 - Displaced vertex
- RPV

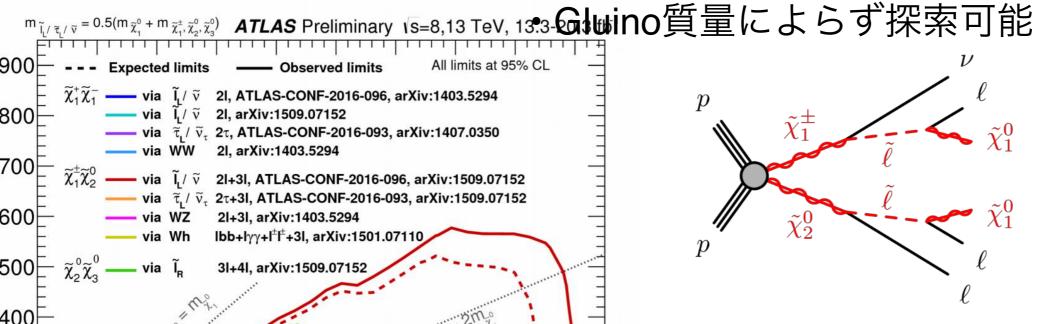
- R-Parityが保存する場合は、SUSY粒子はペア で生成し、複数のSM粒子と最終的には安定な LSP (invisible)になる。
- ・大きな*E*^{miss}、複数のjet、レプトンのトポロ

ジーが基本的なsignatureとなる。

- LHCでは、squark/gluinoのcross sectionが大
 きく、LHC解析ではメインのターゲット
- 終状態のトポロジーによる複数の解析を行う。

• Naturalnessを信じるとstopは軽い(<1TeV)と

- Squark/Gluino
 - 0-lepton + jets
 - 1-lepton + jets
 - 2-lepton + jets
 - photon + jets
 - tau + jets
- stop
- **Electroweakino**


- 考えられる。 p
- Electroweak production ・LSPがダークマターならば<O(1 TeV)にある

 $\tilde{\chi}_1^{\pm}$

 $ilde{\chi}_2^0$

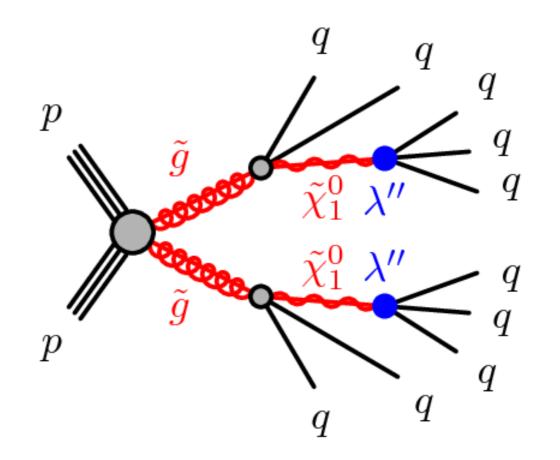
と期待される。

Long-lived

Squark/Gluino

- 0-lepton + jets
- 1-lepton + jets
- 2-lepton + jets
- photon + jets
- tau + jets
- stop
- Electroweakino
- Long-lived
 - Disappearing track
 - Displaced vertex
- RPV

- ・SUSY粒子が超寿命となるシナリオ
 - ・最も軽いチャージーノとニュートラリーノが縮退している 場合(両者が同粒子の場合 e.g. Wino LSP)
 - ・スカラー質量が非常に大きい場合 (Split SUSY)
 - Gravitino LSP, stau NLSP


・信号

- 主崩壊点から離れた位置(O(mm) O(10cm))から多数のト ラックが現れる。
 - Displaced vertex
- ・荷電SUSY粒子が飛跡を検出器に残して途中でLSPに崩壊
 - Disappearing track

• Squark/Gluino

- 0-lepton + jets
- 1-lepton + jets
- 2-lepton + jets
- photon + jets
- tau + jets
- stop
- Electroweakino
- Long-lived
 - Disappearing track
 - Displaced vertex
- RPV

R-Parityが保存しない場合は、*E*_T^{miss}は伴わないが、
 非常に多くのjetが生成される特徴的な信号になる。

ATLAS Moriondの発表

ATLAS-CONF-2017-017	Search for long-lived charginos based on a disappearing-track signature in pp collisions at sqrt(s)=13TeV with the ATLAS detector
ATLAS-CONF-2017-022	Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb–1 of sqrt(s)=13 TeV pp collision data with the ATLAS detector
ATLAS-CONF-2017-021	Search for production of supersymmetric particles in final states with missing transverse momentum and multiple b-jets at sqrt(s)=13 TeV proton-proton collisions with the ATLAS detector
ATLAS-CONF-2017-020	Search for a Scalar Partner of the Top Quark in the Jets+ETmiss Final State at sqrt(s)=13 TeV with the ATLAS detector
ATLAS-CONF-2017-019	Search for direct top squark pair production in events with a Higgs or Z boson, and missing transverse momentum in sqrt(s)=13 TeV pp collisions with the ATLAS detector
ATLAS-CONF-2017-013	Search for new phenomena in a lepton plus high jet multiplicity final state with the ATLAS experiment using sqrt(s)=13 TeV proton-proton collision data
ATLAS-CONF-2017-025	A search for pair-produced resonances in four-jet final states at sqrt(s)=13 TeV with the ATLAS detector
ATLAS-CONF-2017-026	Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector

ATLAS Moriondの発表

ATLAS-CONF-2017-017	Search for long-lived charg Disappearing track signature in pp collisions at sqrt(s)=13TeV
ATLAS-CONF-2017-022	Search for squarks and gluin 0 lepton s with jets and missing transverse momentum using 36 fb–1 of sqrt(s)=13 data with the ATLAS detector
ATLAS-CONF-2017-021	Search for production of supersymmetric particles in final states with missing transverse momentum and multiple $0/1 \text{ lepton} + b\text{-jets}^{n\text{-proton}}$ collisions with the ATLAS detector
ATLAS-CONF-2017-020	Search for a Scalar Partner Final State at sqrt(s)=13 Te [`] Stop all hadronic
ATLAS-CONF-2017-019	Search for direct top squar transverse momentum in sc Stop \rightarrow Higgs, Z in the ATLAS detector
ATLAS-CONF-2017-013	Search for new phenomena Search in the second seco
ATLAS-CONF-2017-025	A search for pair-produced resonances in four-jet final states at sqrt(s)=13 TeV with the ATLAS detector Stop RPV
ATLAS-CONF-2017-026	Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in 13 Displaced vertex

CMS Moriondの発表

Moriond Electro-weak

<u>Jets</u>

- MHT SUS-16-33
- MT2 **SUS-16-36**
- Stop Production **SUS-16-49**
- Search for \tilde{b}, \tilde{t} with $b\bar{b}$ or $c\bar{c}$ **SUS-16-32**
- Higgsino Search with $H \to b\bar{b}$ SUS-16-44

<u>1-lep</u>

• Summed Jet Mass SUS-16-37

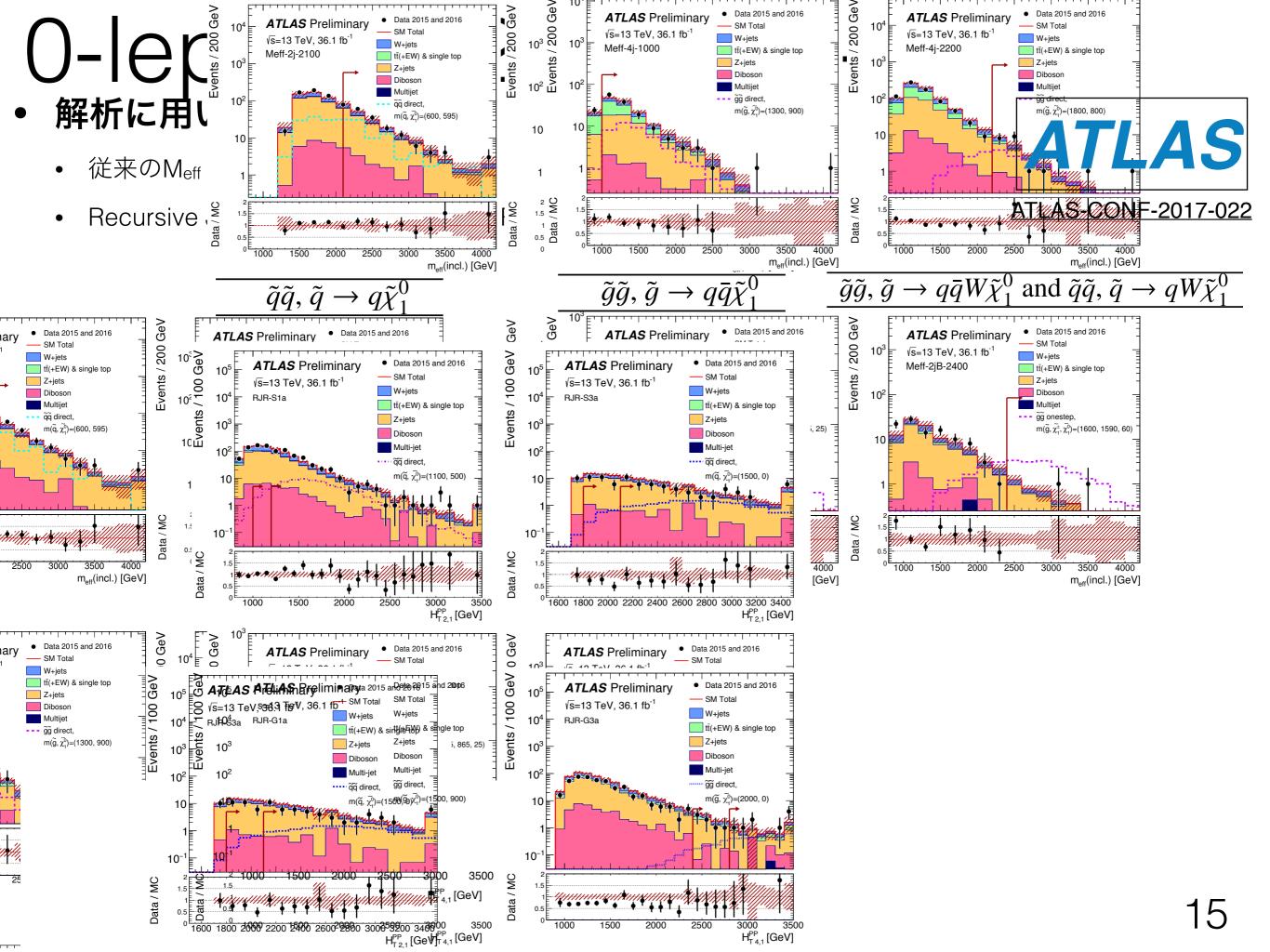
<u>2-lep</u>

- Stop Search $\overline{SUS-17-001}$
- $\bullet\,$ Same-sign Leptons ${\bf SUS-16-35}$
- Soft opposite-sign Leptons **SUS-16-48**

Moriond C

<u>multi-lep</u>

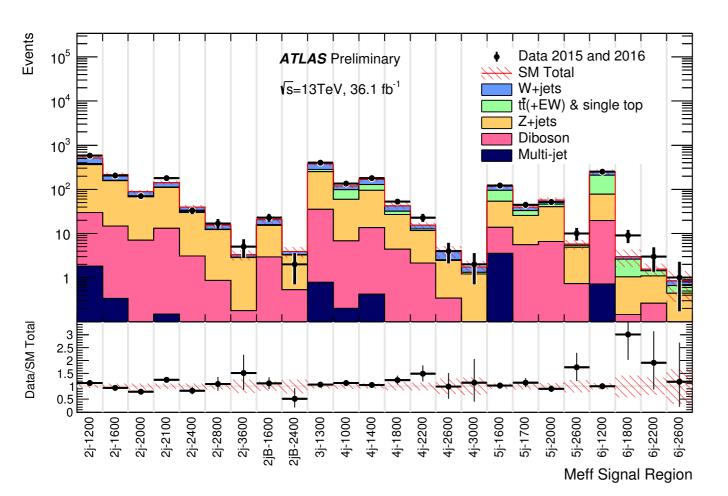
• Multilepton Search for EWKinos SUS-16-39

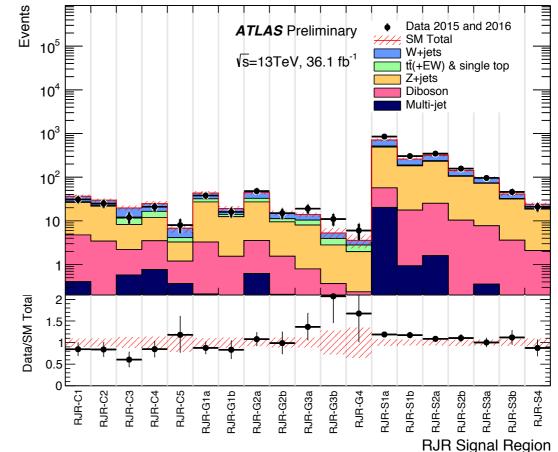

Photons

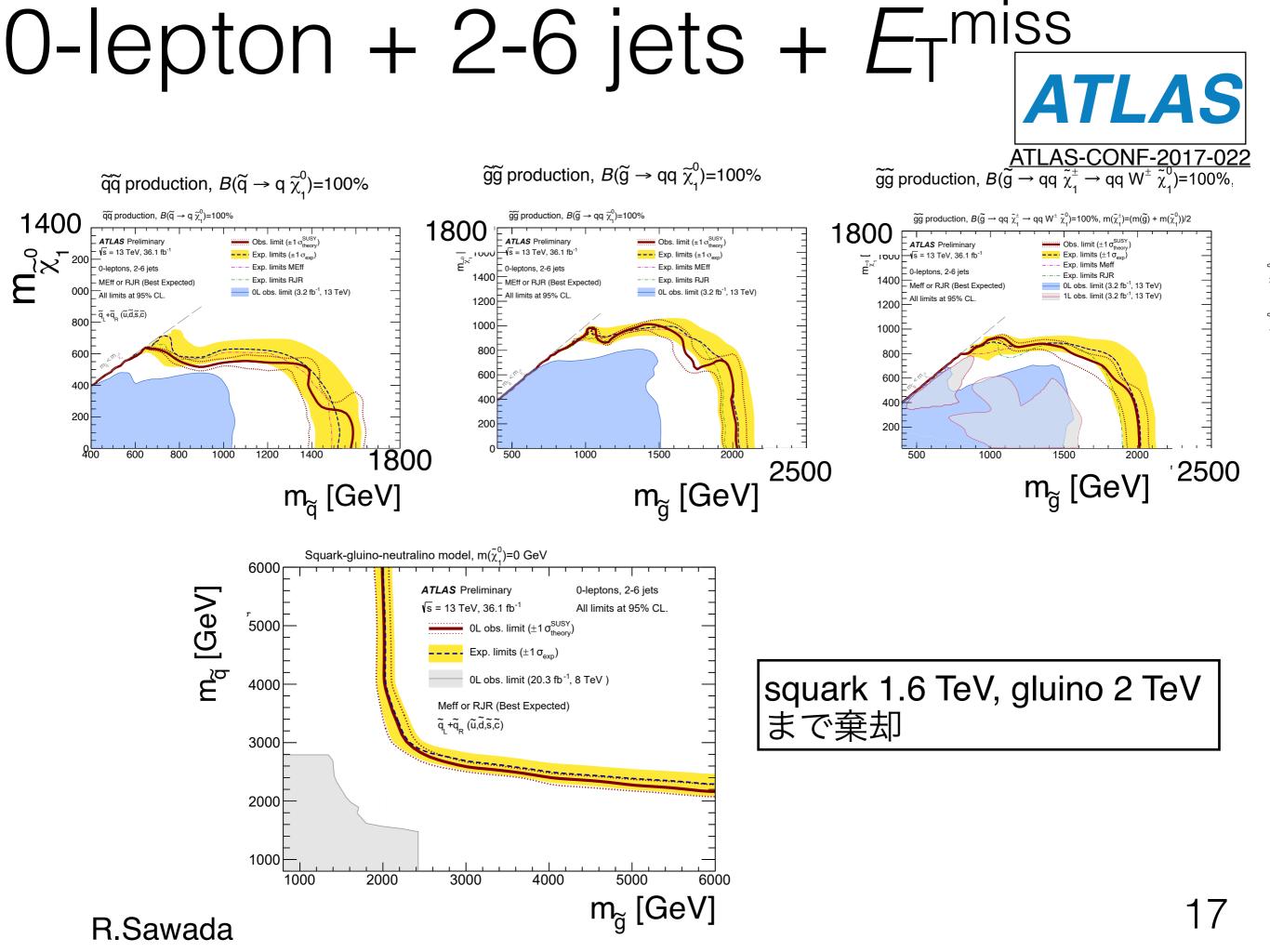
- SUSY Search with Photon and Missing E_T SUS-16-46
 - SUSY Search with Photon and EM H_T SUS-16-47
 - Razor Variables and $H \rightarrow \gamma \gamma$ SUS-16-045 • Razor Variables and $H \rightarrow \gamma \gamma$ SUS-

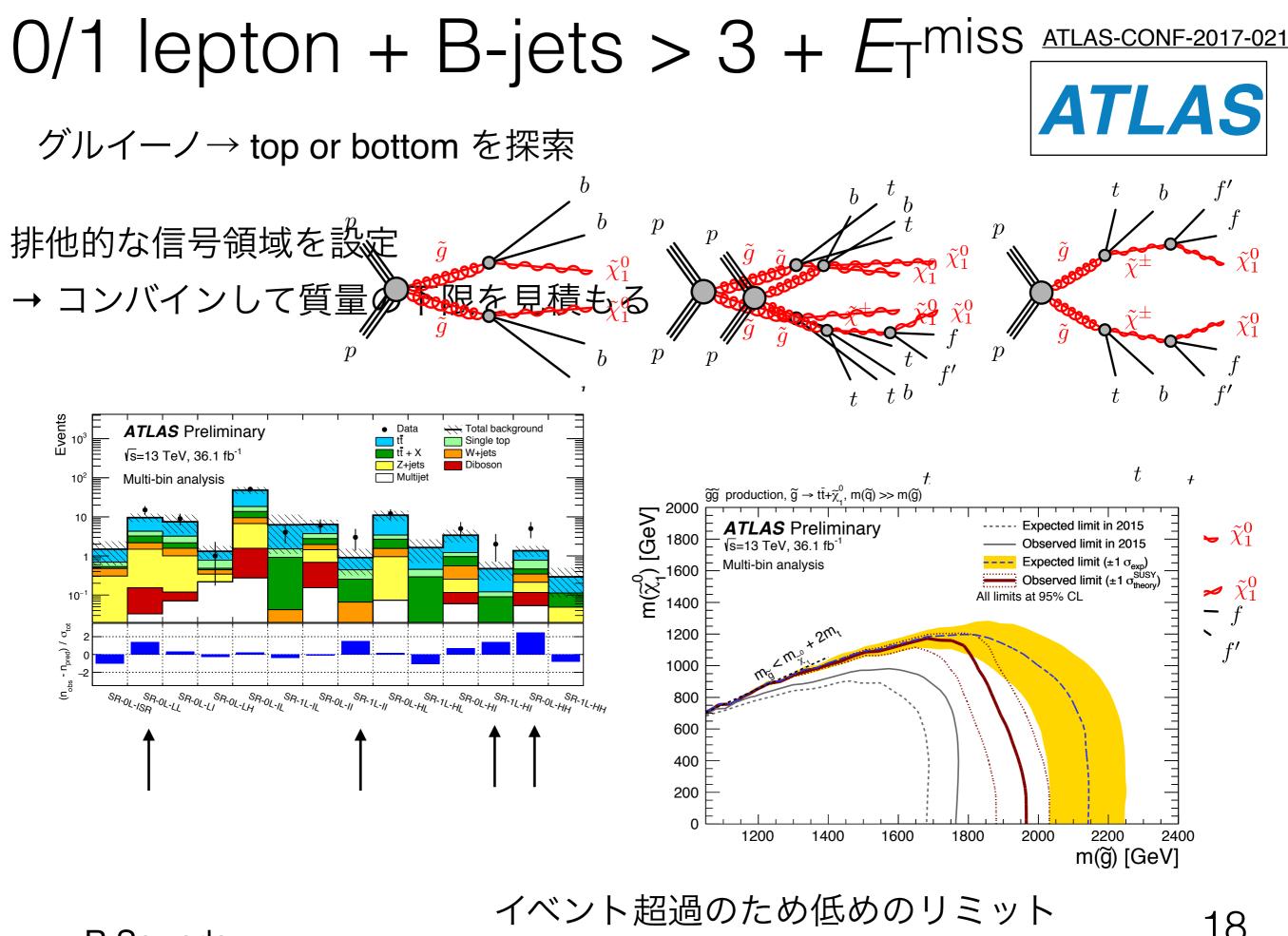
<u>1-lep</u>

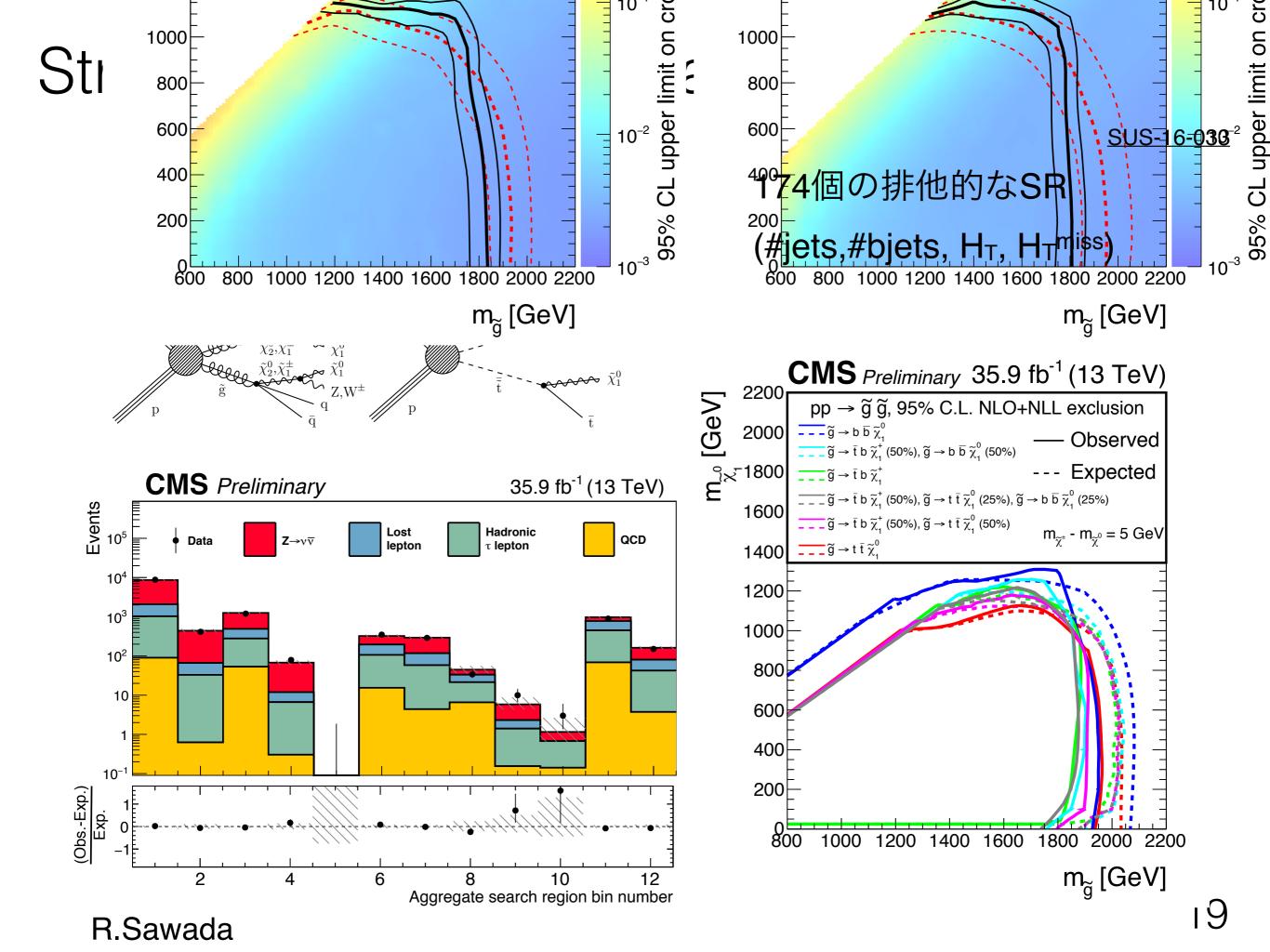
- SUSY Search with $\Delta \phi$ **SUS-16-42** • SUSY Search with $\Delta \phi$ **SUS-16-42**
- Stop Search with 1-lepton **SUS-16-51** • Stop Search with 1-lepton **SUS-16-51**
 - **2-lep** Opposite-sign Edge Z SUS-16-34 • Opposite-sign Edge Z SUS-16


multi-lep • Multi-leptons with b-jets SUS-16-041 • Multi-leptons with b-jets S


0-lepton + 2-6

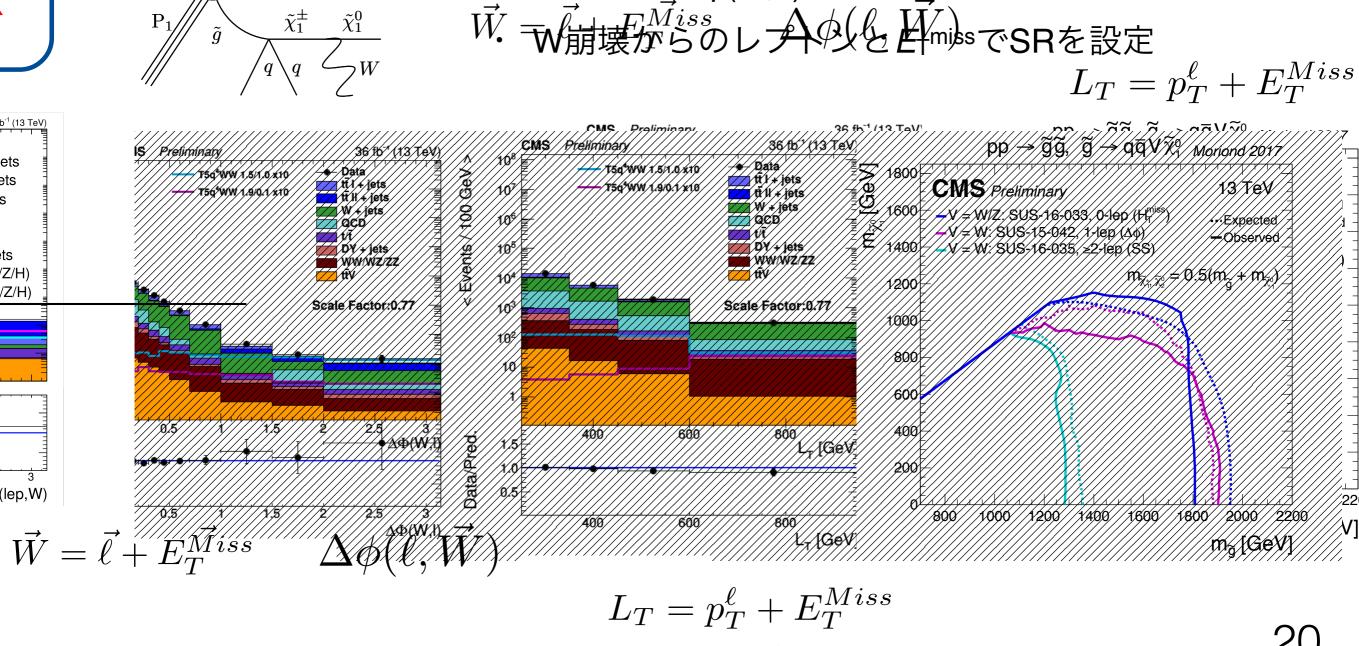

Multi-jet 10 Data/SM Total 2.5 0.5 2j-1200 2jB-2400 2j-2100 2j-2400 2j-3600 2jB-1600 3j-1300 4j-1000 2j-1600 2j-2000 2j-2800 4j-1400 4j-1800 ATLAS-CONF-2019:022

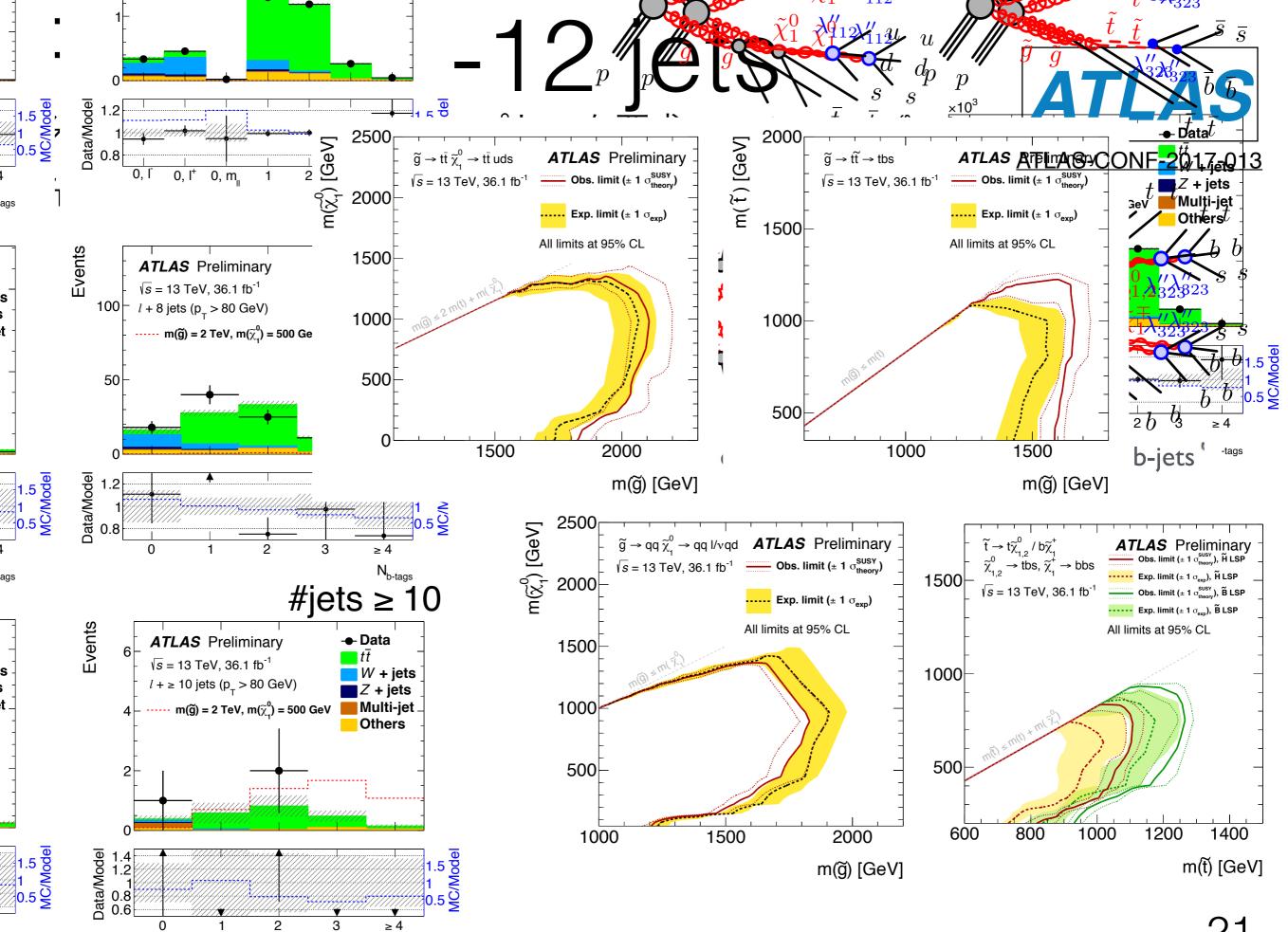

全信号領域のイベント数。



優位な超過はない。 Events E Data 2015 and 2016 ATLAS Preliminary SM Total 10⁵ E W+jets tī(+EW) & single top √s=13TeV, 36.1 fb⁻¹ Z+jets 10⁴ Diboson Multi-jet

<u>1 lepton and $\Delta \phi$ </u>

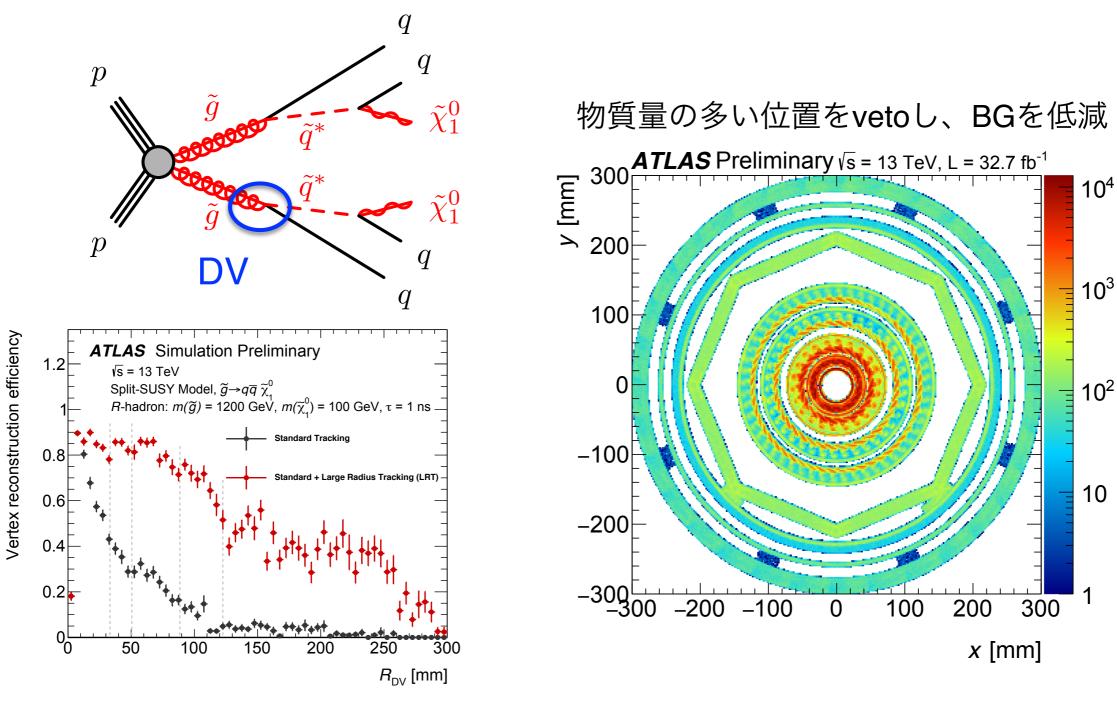

SUS-16-042


 $\tilde{\chi}_1^{\pm}$

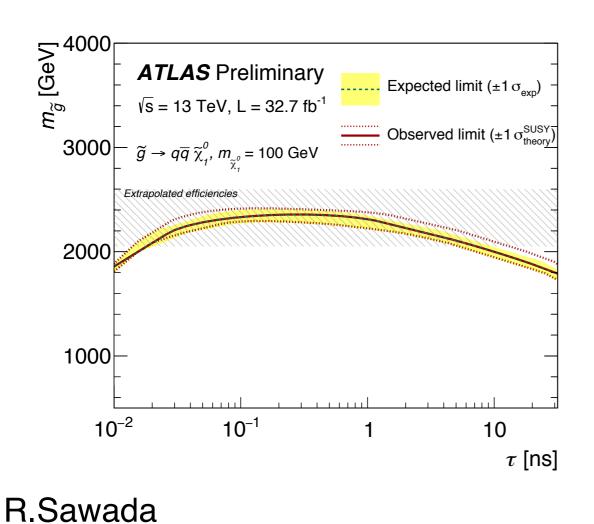
・ SUSY粒子の崩壊からの高pTのWを使う

ので、_Δφ(W, I)はフラットになる

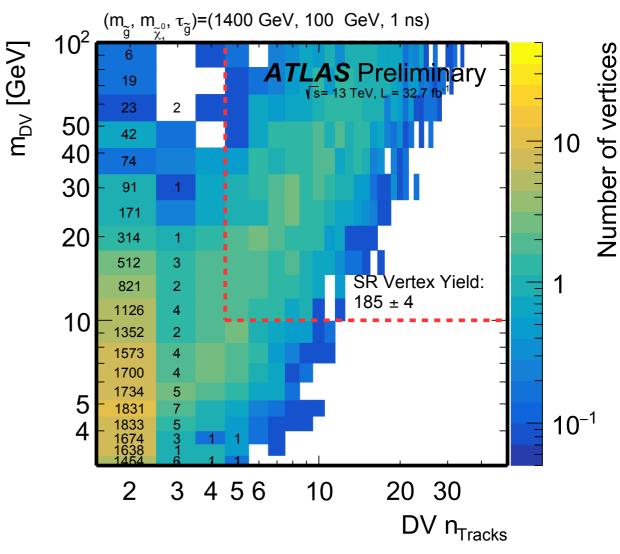
・ SUSYの場合はLSPとニュートリノが*E*T^{miss}となる

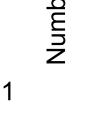


Displaced vertex


Density of observed vertices [a.u.]

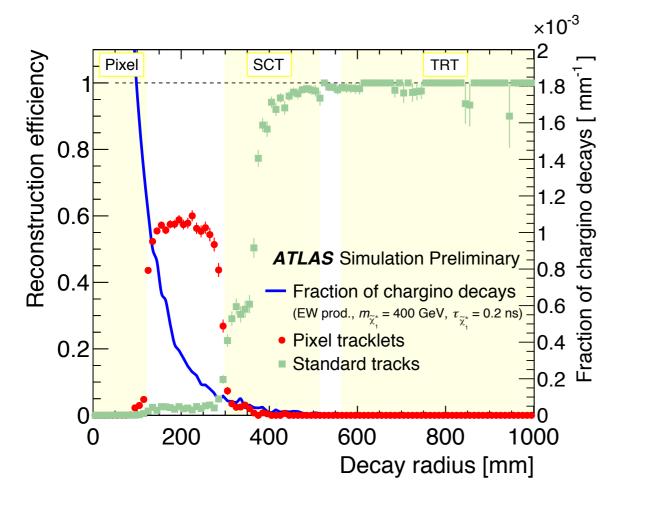
- 超寿命新粒子の崩壊を探索
- 内部飛跡検出器内のバーテックスからの複数のジェット
- 専用のトラッキング (Large Radius Tracking)で効率を向上

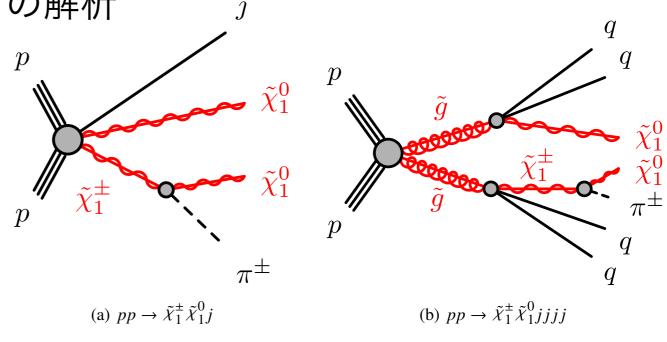


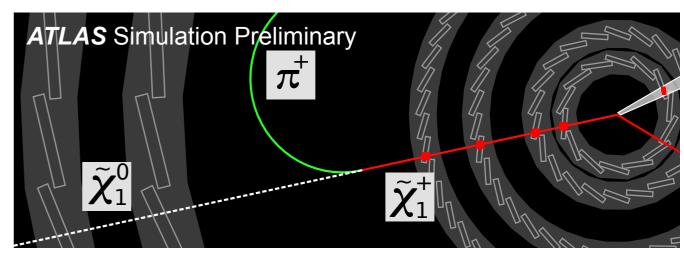

Displaced vertex

- バックグランド
 - ハドロン相互作用
 - 複数のバーテックスがマージされた場合
 - 物理BGはない ullet
- バックグランド予想 0.2 ± 0.2
- 観測:0 event

- 色: signalの予想
- 数字:観測数

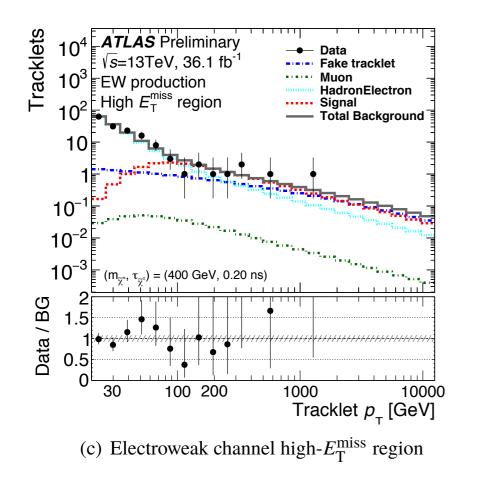


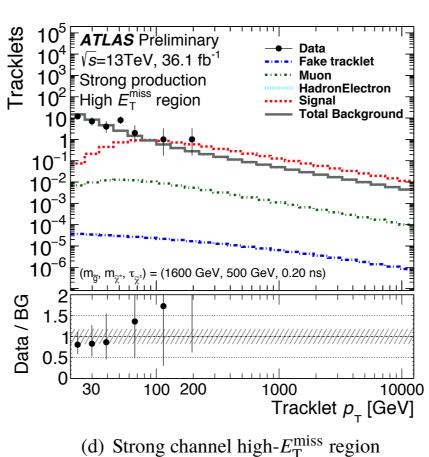


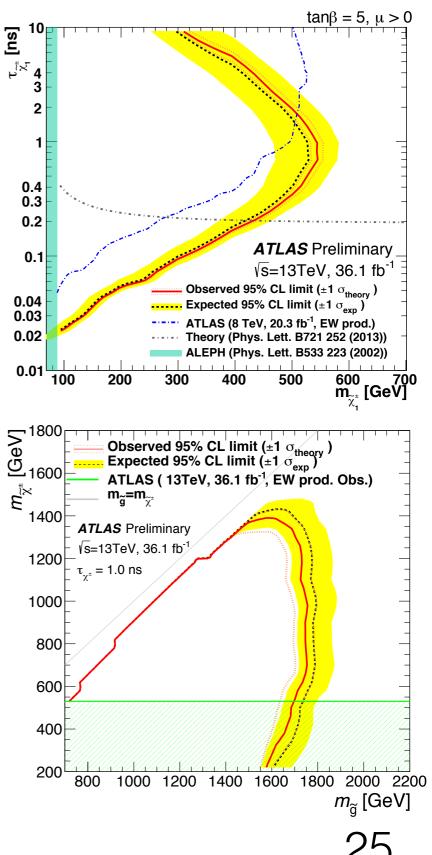


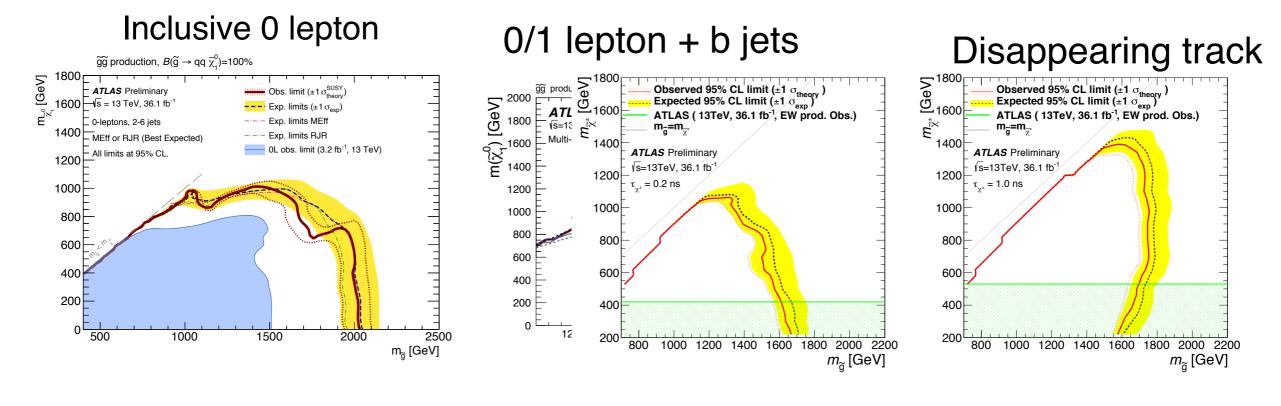
Disappearing track ATLAS

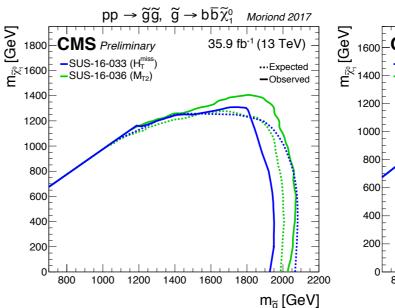
- ・ O(10cm)で崩壊するSUSY粒子の飛跡を検出
- ・ 通常よりも短い飛跡に適した再構成を行う
 - ・ Run2から入った最内層のピクセル検出器で感度向上
- ・Electroweakとstrongプロダクションの解析

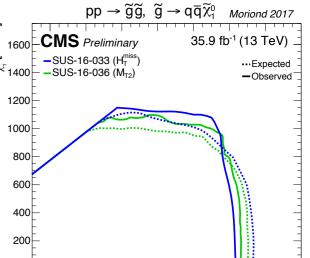

R.Sawada


ATLAS-CONF-2017-017


Disappearing track

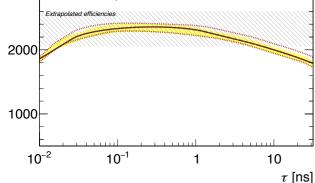

- ・イベントの超過は無し
- Wino LSPに対応する~0.2nsecの寿命に対しての 制限を向上
- 新たにグルイーノ質量に対しても制限をつけた

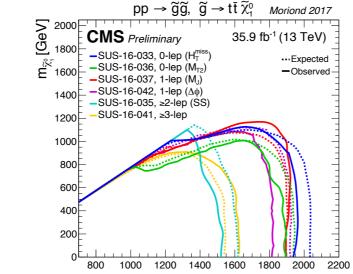



gluino pair production まとめ

m_α [GeV]

Gluino → 4 b



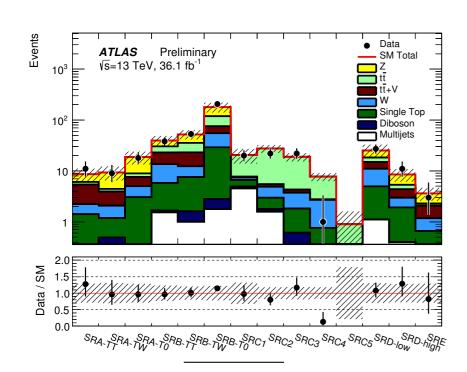


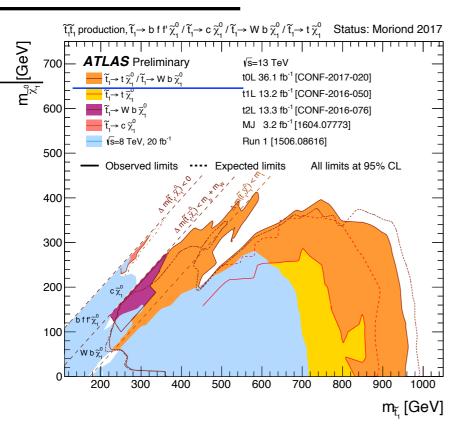
1000 1200 1400 1600

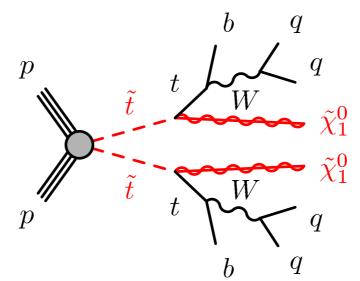
Gluino \rightarrow light q

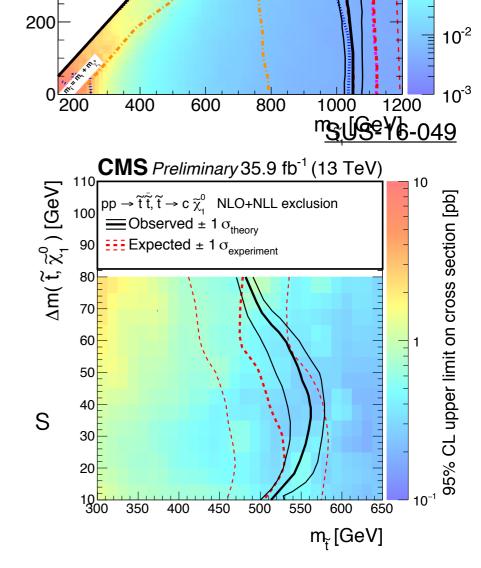
Solution to the product of the prod

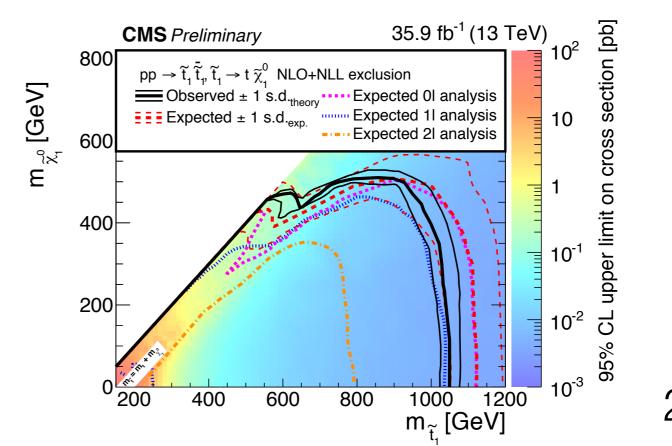
Gluino \rightarrow 4 t

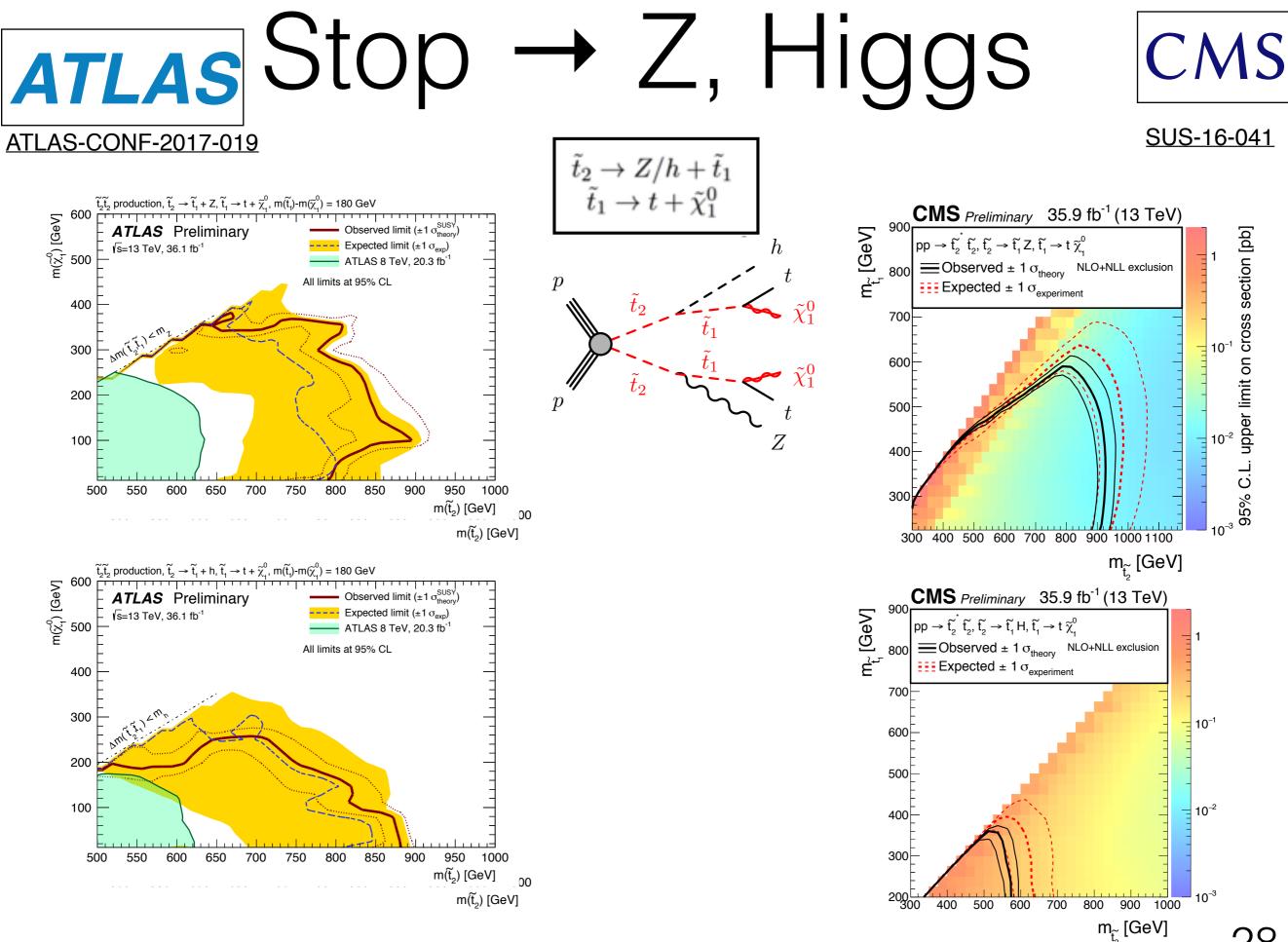


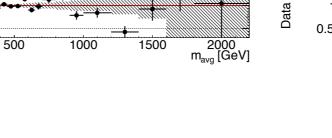

1800 2000 2200


m_ã [GeV]


ATLAS Stop all had


ATLAS-CONF-2017-020

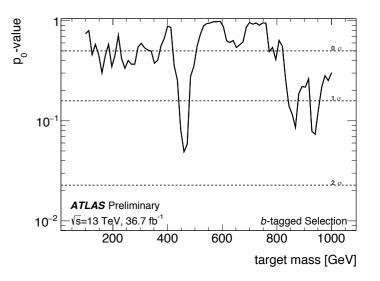




R.Sawada

28

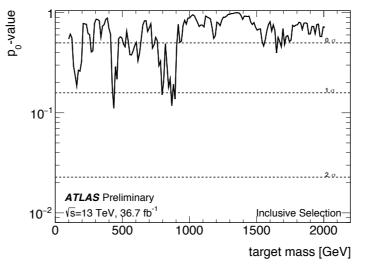
Data 0.5 stop RPV



1500 m_{avg} [GeV] AILAJ ATLAS-CONF-2017-025

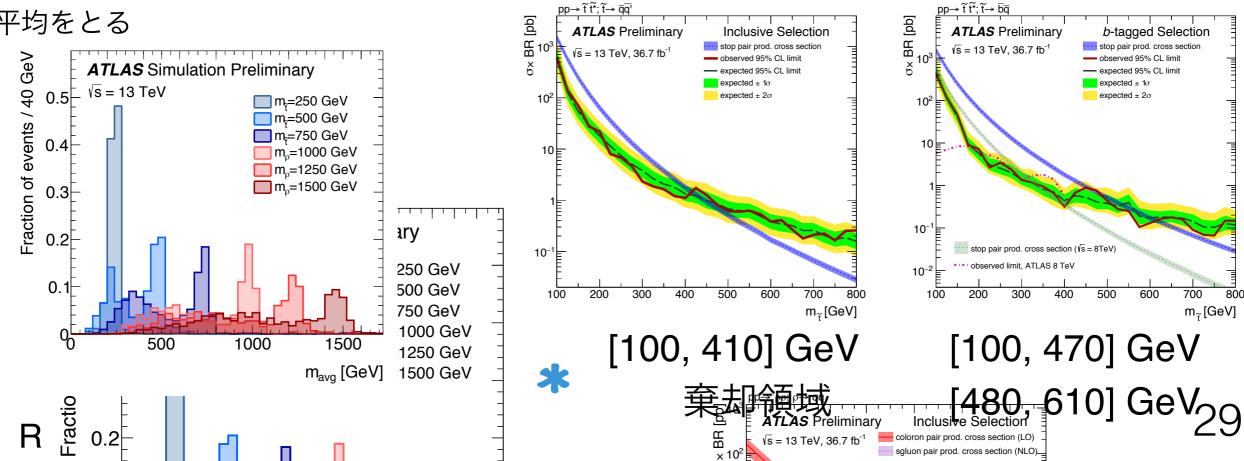
1000

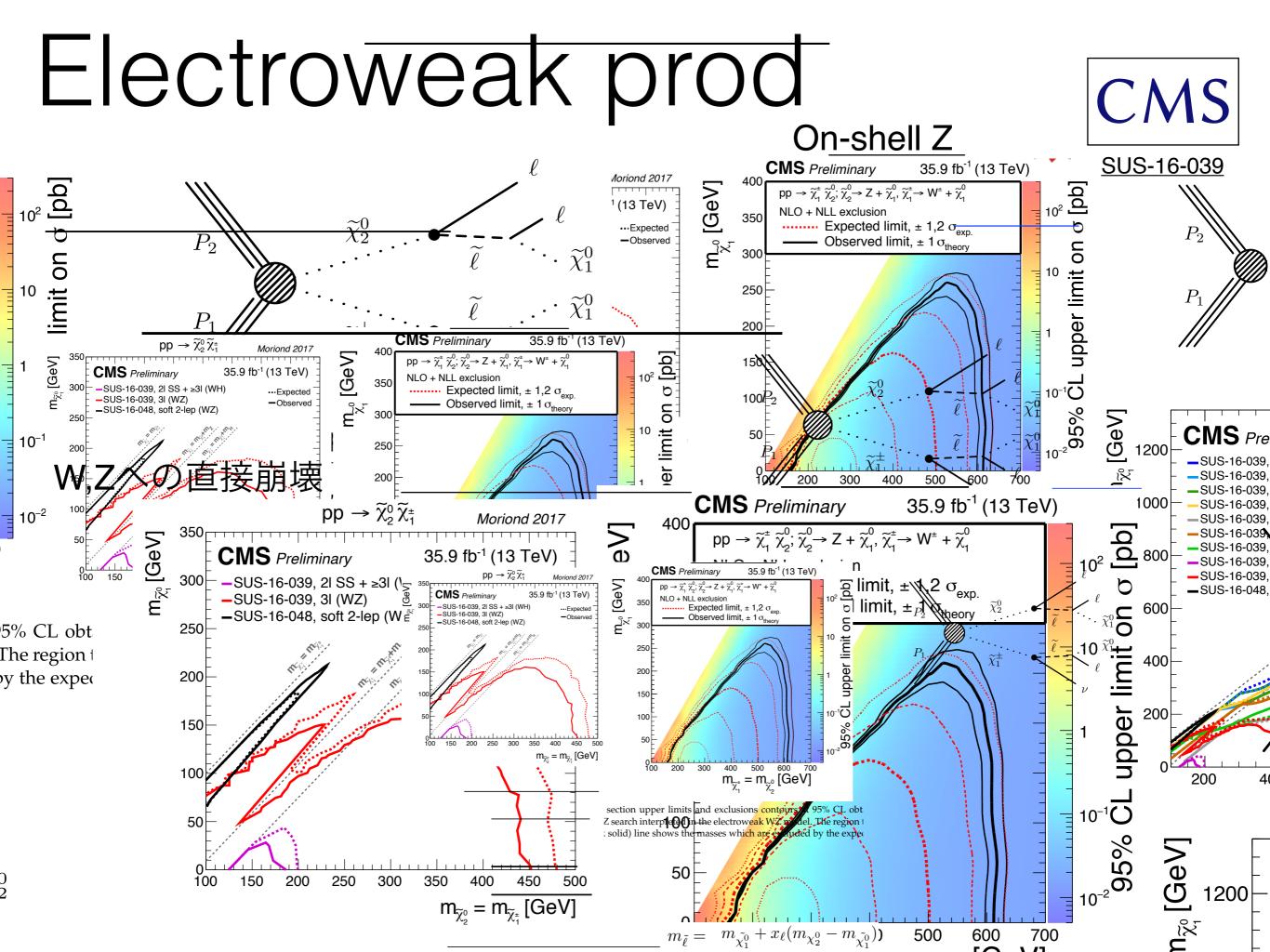
500

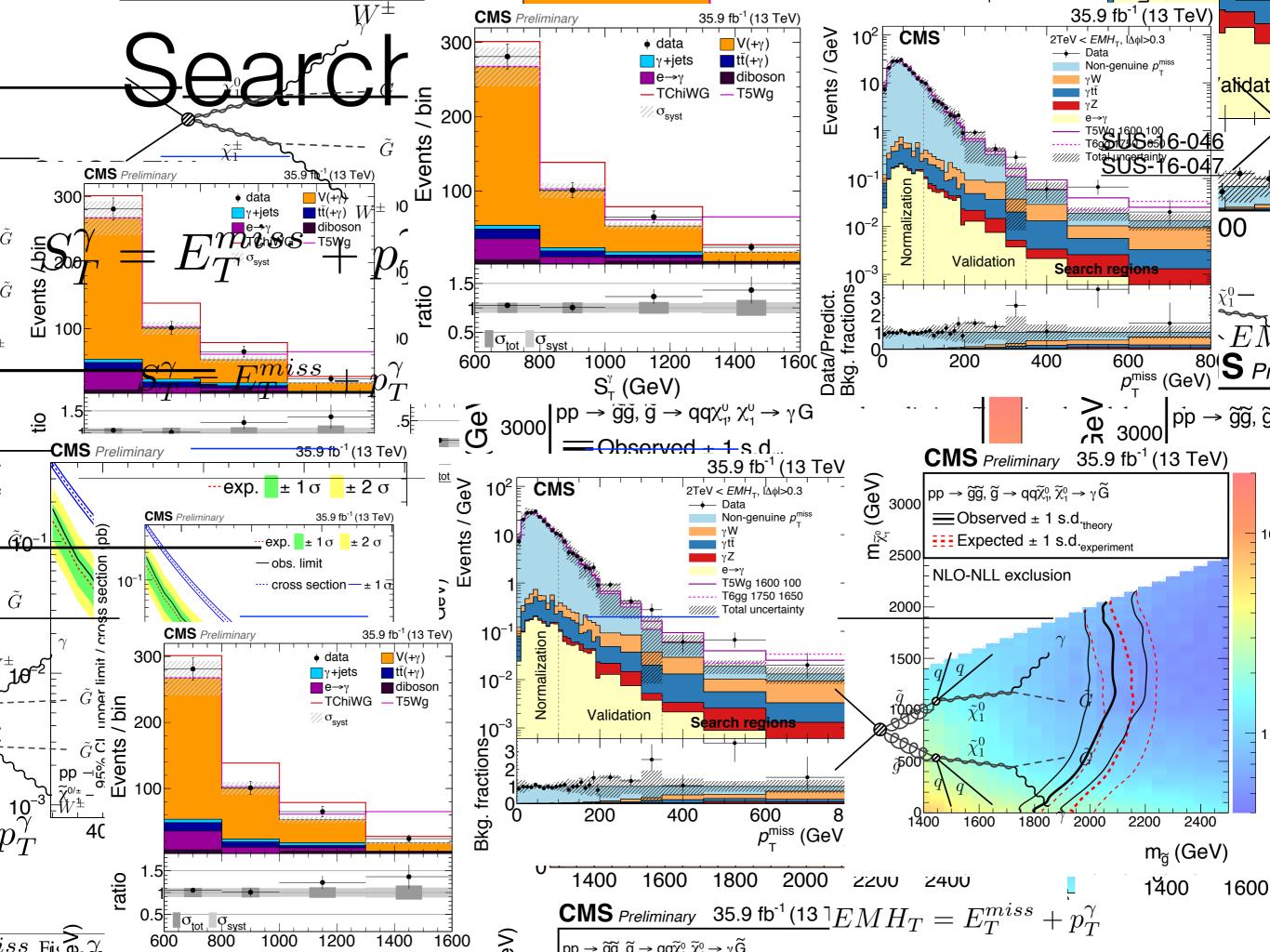

b quarkを含む崩壊

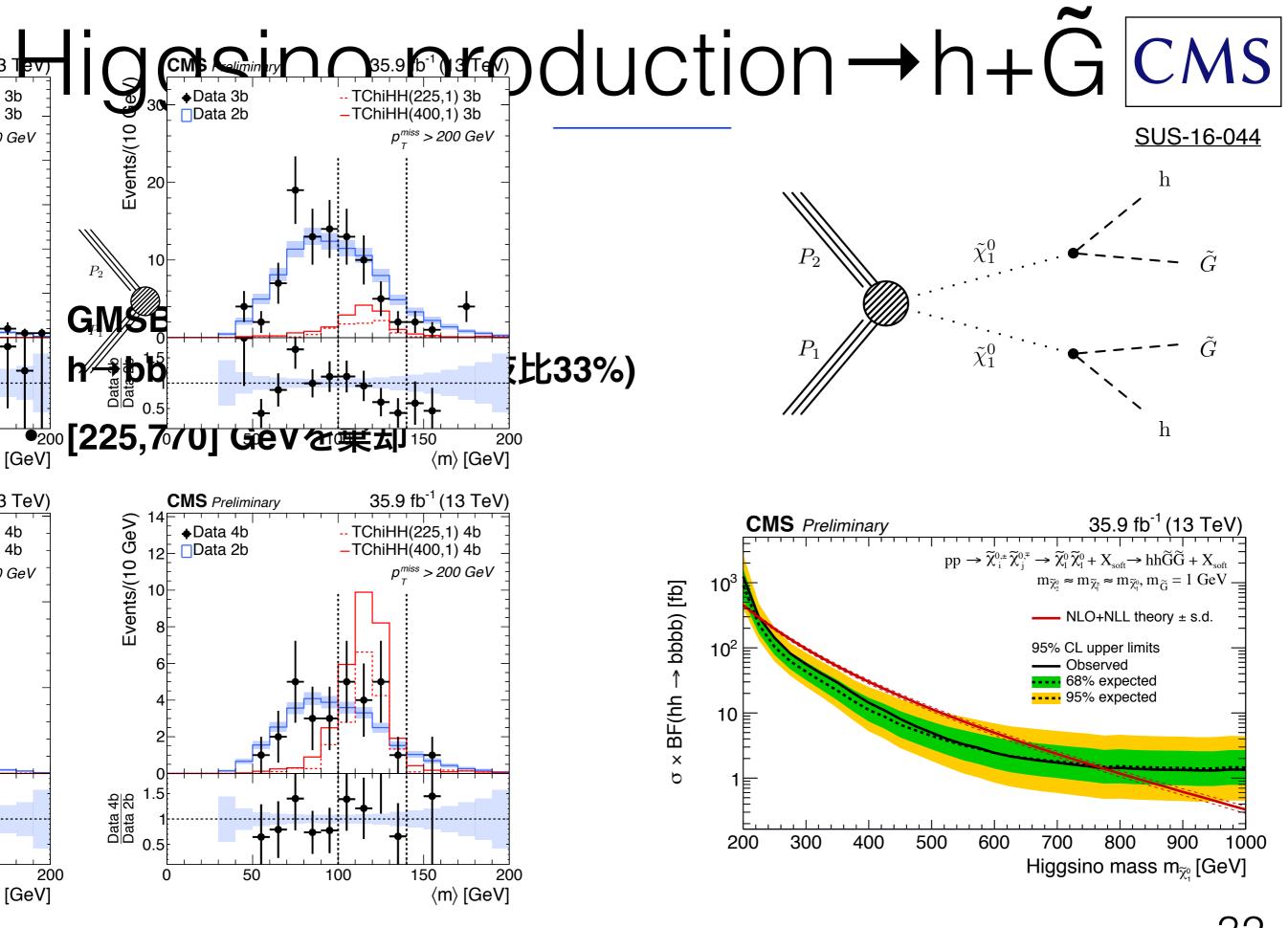
pp→ t̃ t̃*; t̃→ b̄q

p λ_{312}'' d λ_{312}'' pS


stopがそれぞれ2クォークへ崩壊

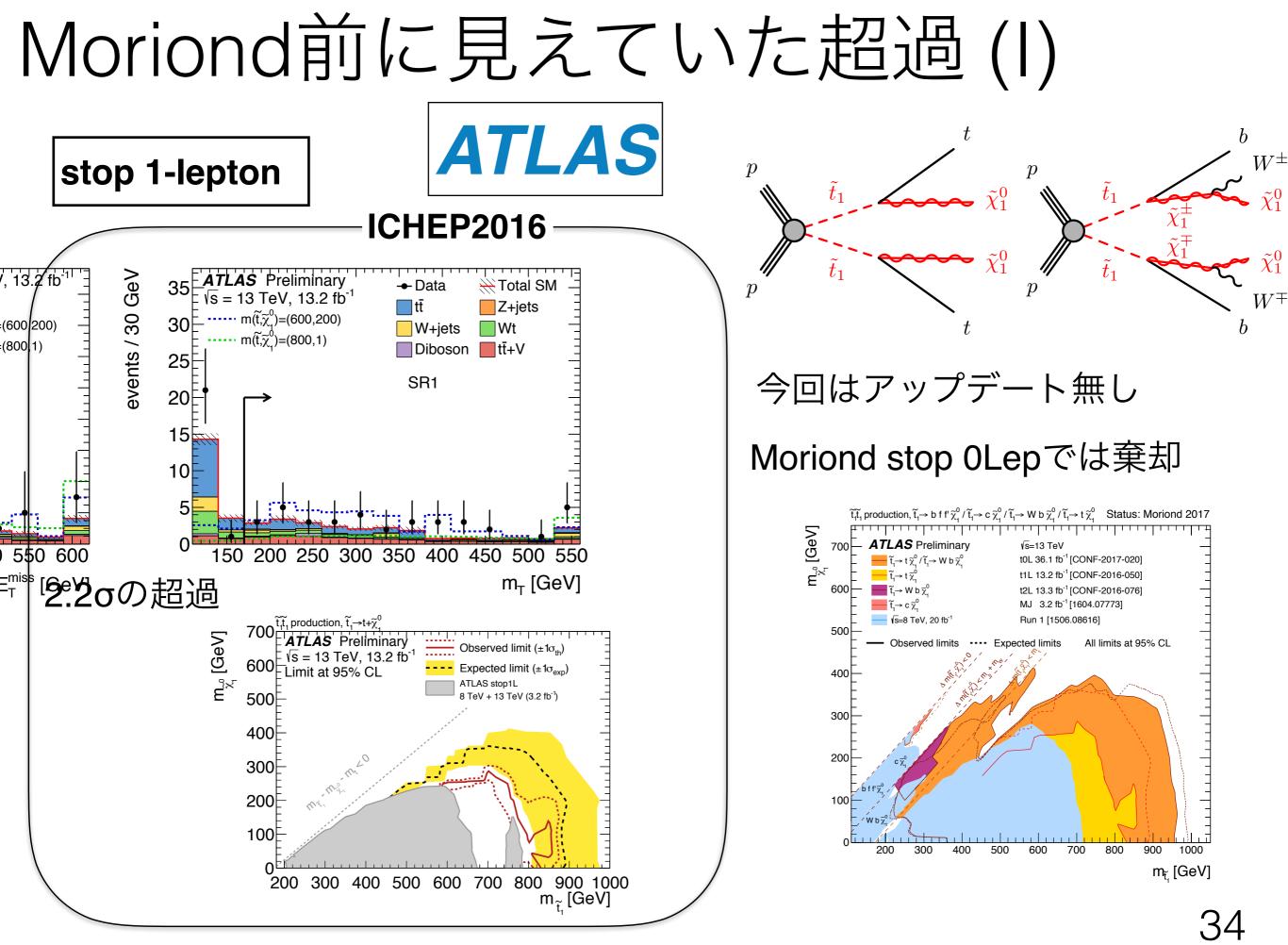



Light quarkへ崩壊


Jetのペアから質量をそれぞれ再構成し

平均をとる

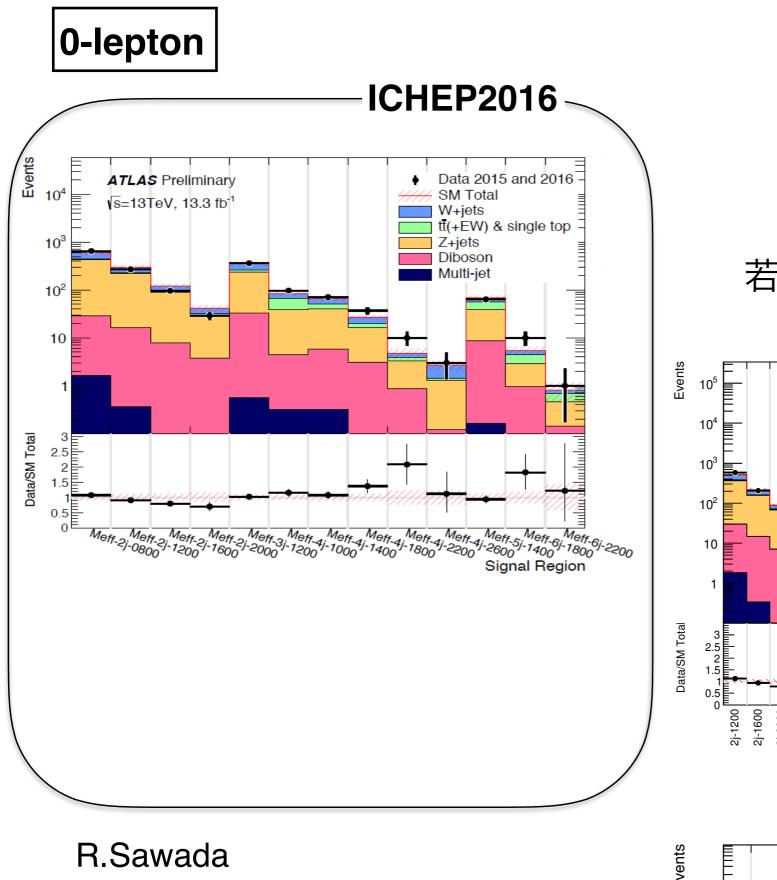
ATLAS SUSY Searches* - 95% CL Lower Limits Status: March 2017



ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

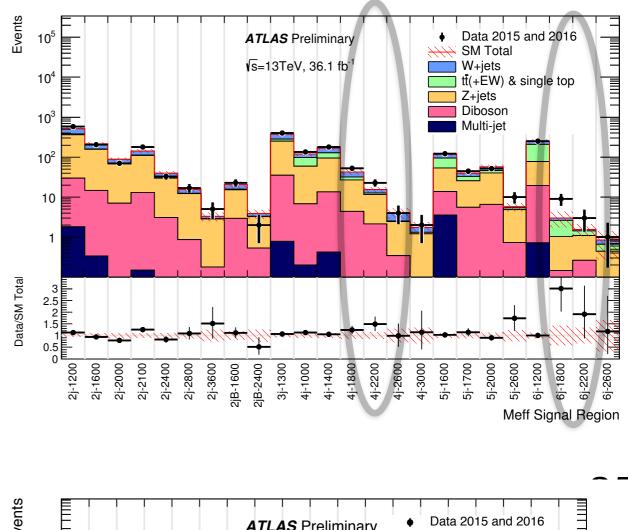
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	Mass limit	$\sqrt{s}=7,$	8 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (compressed) \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ GMSB (\ell \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GFM (higgsino \ NLSP) \\ GFM (higgsino \ NLSP) \\ GFM (higgsino \ NLSP) \\ Gravitino \ LSP \end{array} $	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3		1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & m(\tilde{\chi}^0_1) < 200 \; GeV, \; m(1^{\mathrm{st}} \; \mathrm{gen.} \; \tilde{q}) = m(2^{\mathrm{nd}} \; \mathrm{gen.} \; \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{\chi}^0_1) < 5 \; GeV \\ & m(\tilde{\chi}^0_1) < 200 \; GeV, \; m(\tilde{\chi}^{\pm}) = 0.5 (m(\tilde{\chi}^0_1) + m(\tilde{g})) \\ & m(\tilde{\chi}^0_1) < 200 \; GeV, \; m(\tilde{\chi}^{\pm}) = 0.5 (m(\tilde{\chi}^0_1) + m(\tilde{g})) \\ & m(\tilde{\chi}^0_1) < 500 \; GeV \\ & cr(NLSP) < 0.1 \; mm \\ & m(\tilde{\chi}^0_1) < 950 \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu < 0 \\ & m(\tilde{\chi}^0_1) > 680 \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu > 0 \\ & m(\tilde{\chi}^0_1) > 1.8 \times 10^{-4} \; eV, \; m(\tilde{g}) = m(\tilde{q}) = 1.5 \; TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.		0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	το δο δο δο	1.92 TeV 1.97 TeV 1.37 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0})\!<\!600\mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0})\!<\!200\mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0})\!<\!300\mathrm{GeV} \end{array}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow C\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 f mono-jet 1 b 1 b 4 b		3.2 13.2 .7/13.3 20.3 3.2 20.3 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{split} & m(\tilde{\chi}_{1}^{0}) < 100 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 150 \text{GeV}, m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{1}^{0}) + 100 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 150 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) > 150 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak prod GGM (bino NLSP) weak prod$	4 e,μ l. 1 e,μ + γ	0 0 	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m(\tilde{\chi}_1^{\pm})=$	$\begin{split} & m(\tilde{x}_{1}^{0}) {=} 0 GeV \\ & 0 GeV, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\ell}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 GeV, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell}(\tilde{\kappa}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell} decoupled \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{2}^{0}) {+} m(\tilde{\chi}_{1}^{0})) \\ & c\tau {<} 1 mm \\ \end{split}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) +$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\muv/\mu\muv$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	$\tilde{\chi}_1^{\pm}$ dE/dx trk 0 trk dE/dx trk r(e, μ) 1-2 μ		Yes Yes - - Yes - Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	\tilde{X}_{1}^{\pm} 430 GeV \tilde{X}_{1}^{\pm} 495 GeV \tilde{g} 850 GeV \tilde{g} 850 GeV \tilde{g} 850 GeV \tilde{g} 10 TeV $\tilde{\chi}_{1}^{0}$ 1.0 TeV $\tilde{\chi}_{1}^{0}$ 1.0 TeV		$\begin{split} & m(\tilde{\chi}_1^+)\text{-}m(\tilde{\chi}_1^0)\text{-}160 \; MeV, \; \tau(\tilde{\chi}_1^\pm)\text{=}0.2 \; \mathrm{ns} \\ & m(\tilde{\chi}_1^+)\text{-}m(\tilde{\chi}_1^0)\text{-}160 \; MeV, \; \tau(\tilde{\chi}_1^\pm)\text{-}15 \; \mathrm{ns} \\ & m(\tilde{\chi}_1^0)\text{=}100 \; GeV, \; 10 \; \mu \mathrm{s}\text{-}\tau(\tilde{g})\text{-}1000 \; \mathrm{s} \\ & m(\tilde{\chi}_1^0)\text{=}100 \; GeV, \; \tau\text{>}10 \; \mathrm{ns} \\ & 10\text{-}tan\beta\text{-}50 \\ & 1\text{-}\tau(\tilde{\chi}_1^0)\text{-}3 \; \mathrm{ns}, \; SPS8 \; model \\ & 7 < c\tau(\tilde{\chi}_1^0)\text{-}740 \; nm, \; m(\tilde{g})\text{=}1.3 \; TeV \\ & 6 < c\tau(\tilde{\chi}_1^0)\text{-}480 \; nm, \; m(\tilde{g})\text{=}1.1 \; TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu v, \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow evv, e\mu v, \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qqq \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq\bar{q} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\bar{q} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow it \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow it \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow it \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \ (\text{SS}) \\ \mu \mu \nu & 4 \ e, \mu \\ \nu_{\tau} & 3 \ e, \mu + \tau \\ & 0 & 4 \\ & 0 & 4 \\ & 1 \ e, \mu & 8 \\ & 1 \ e, \mu & 8 \end{array}$	- 0-3 b - - -5 large-R je -5 large-R je -10 jets/0-4 -10 jets/0-4 2 jets + 2 b 2 b	ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 20.3	$ \begin{array}{c c} \tilde{y}_{r} \\ \tilde{q}, \tilde{g} \\ \tilde{\chi}^{\pm} \\ \tilde{\chi}^{\pm} \\ \tilde{\chi}^{\pm} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ \tilde{\chi}^{\pm} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ \tilde{\chi}^{\pm} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ 1.08 \text{ T} \\ \tilde{g} \\ g$	eV 1.55 TeV 2.1 TeV 1.65 TeV	$\begin{array}{l} \lambda_{311}'=0.11, \ \lambda_{132/133/233}=0.07 \\ m(\tilde{q})=m(\tilde{g}), \ c\tau_{LSP}<1 \ mm \\ m(\tilde{\chi}_{1}^{0})>400 \ GeV, \ \lambda_{12k}\neq 0 \ (k=1,2) \\ m(\tilde{\chi}_{1}^{0})>0.2\times m(\tilde{\chi}_{1}^{1}), \ \lambda_{133}\neq 0 \\ BR(t)=BR(b)=BR(c)=0\% \\ m(\tilde{\chi}_{1}^{0})=800 \ GeV \\ \ m(\tilde{\chi}_{1}^{0})=1 \ TeV, \ \lambda_{112}\neq 0 \\ m(\tilde{\chi}_{1})=1 \ TeV, \ \lambda_{323}\neq 0 \\ BR(\tilde{t}_{1}\rightarrow be/\mu)>20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Othe	r Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Only	a selection of the availab nomena is shown. Many c	e mass limits f the limits are	on new s e based o	tates o	^{or} 1	0 ⁻¹	1	Mass scale [TeV]	

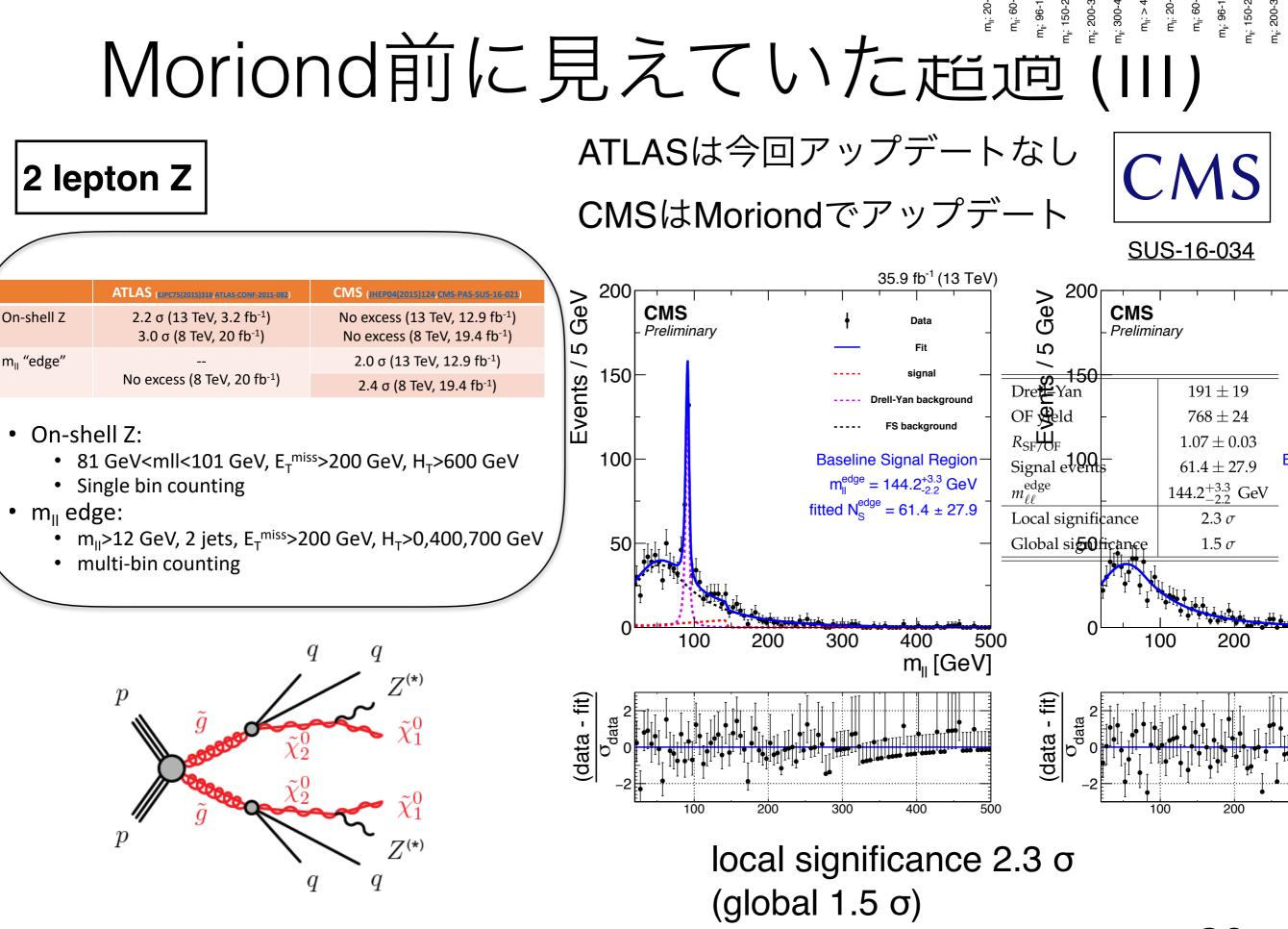
*0 phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.



> 5 ATLAS Preliminary _____ Data ____ Tatal S

Total CM


Moriond前に見えていた超過 (II)


ATLAS

Data 2015 and 2016

若干(1.5σ)の超過は大きな変化なし

ATLAS Preliminary

R.Sawada

n

まとめ

- ATLAS, CMSそれぞれ多くのチャンネルで結果を更新
- SUSYの兆候はなし
- 制限
 - グルイーノ ~2TeV
 - stop ~1 TeV
- Electroweak production, long-lived, Higgsino等のチャン
 ネルや、解析・オブジェクト再構成・IDの改良にも期待

0 lepton SR

Targeted signal	$ ilde q ilde q, ilde q o q ilde \chi_1^0$									
Dequinament				Signal Reg	ion [Meff-]					
Requirement	2j-1200	2j-1600	2j-2000	2j-2400	2j-2800	2j-3600	2j-2100	3j-1300		
$E_{\rm T}^{\rm miss}$ [GeV] >				25	50		•			
$p_{\rm T}(j_1) [{\rm GeV}] >$	250	300		35	50		600	700		
$p_{\rm T}(j_2) [{\rm GeV}] >$	250	300		35	50		50			
$p_{\rm T}(j_3) [{\rm GeV}] >$				_				50		
$ \eta(j_{1,2}) <$	0.8		1	.2			-			
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$			0	.8			0	.4		
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$		0.4 0.2								
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	14	18 26						16		
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1200	1600	1600 2000 2400 2800 3600 2100							

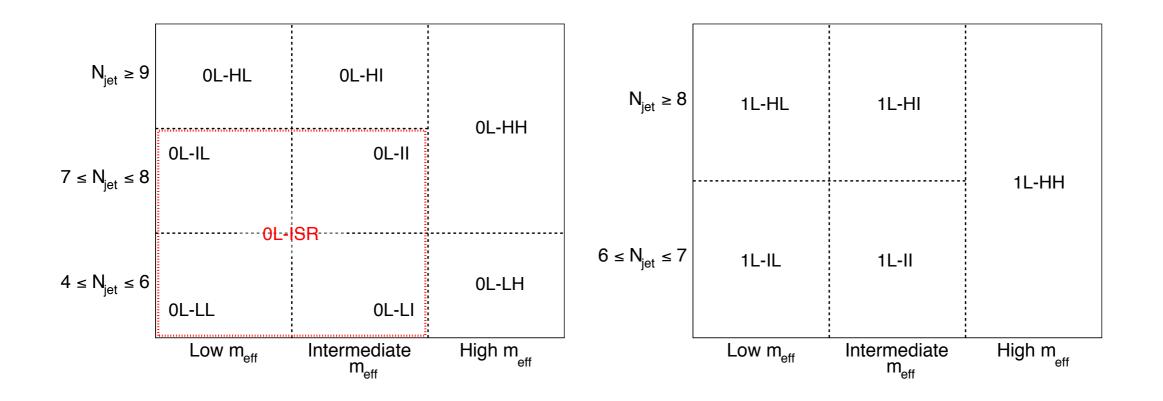
Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} ightarrow q \bar{q} \tilde{\chi}_1^0$									
Requirement		Signal Region [Meff-]								
Requirement	4j-1000	4j-1400	4j-1800	4j-2200	4j-2600	4j-3000	5j-1700			
$E_{\rm T}^{\rm miss}$ [GeV] >				250						
$p_{\rm T}(j_1) [{\rm GeV}] >$			2	00			700			
$p_{\rm T}(j_4) [{\rm GeV}] >$		10	00		1:	50	50			
$p_{\rm T}(j_5) [{\rm GeV}] >$		-								
$ \eta(j_{1,2,3,4}) <$	1.2			2.0			-			
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$				0.4						
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$			0	.4			0.2			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.3 0.25 0.2						0.3			
Aplanarity >	0.04						-			
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1000 1400 1800 2200 2600 3000								

Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}W\tilde{\chi}_1^0 \text{ and } \tilde{q}\tilde{q}, \tilde{q} \to qW\tilde{\chi}_1^0$							
Dequinement	Signal Region [Meff-]							
Requirement	5j-1600	5j-2000	5j-2600	6j-1200	6j-1800	6j-2200	6j-2600	
$E_{\rm T}^{\rm miss}$ [GeV] >				250				
$p_{\rm T}(j_1) [{\rm GeV}] >$				200				
$p_{\rm T}(j_6) [{\rm GeV}] >$		5	0			100		
$ \eta(j_{1,,6}) <$		_		2.	.0	-	-	
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0	.4	0.8		0	.4		
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$	0.2	0	.4		0	.2		
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.15	-	_	0.25 0.2 0.15			0.15	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	-	15	18	-				
Aplanarity >	0.08		-	0.04 0.08				
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1600	2000	2600	1200	1800	2200	2600	

Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}W\tilde{\chi}_1^0$ and $\tilde{q}\tilde{q}, \tilde{q} \to qW\tilde{\chi}_1^0$	
-----------------	--	--

0	$55,5$ 11 λ	1171 $1^{\circ}\lambda$				
Dequirement	Signal	Region				
Requirement	Meff-2jB-1600	Meff-2jB-2400				
$E_{\rm T}^{\rm miss}$ [GeV] >	2:	50				
$p_{\rm T}(\text{Large-R } j_1) [\text{GeV}] >$	20	00				
$p_{\rm T}(\text{Large-R } j_2) [\text{GeV}] >$	200					
$m(\text{Large-R } j_1) [\text{GeV}]$	[60,110]					
$m(\text{Large-R } j_2) [\text{GeV}]$	[60,	110]				
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0	.6				
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$	0.4					
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	20					
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1600 2400					

0 lepton SR


Targeted signal		$ ilde{g} ilde{g}, ilde{g} o q ilde{\chi}_1^0$							
Requirement			Signal Region						
-	RJF	R-S1	RJI	R-S2	RJF	R-S3	RJR-S4		
$H_{1,1}^{\rm PP}/H_{2,1}^{\rm PP} \ge$	0.:	55	0	.5	0.	45	-		
$H_{1,1}^{\text{PP}}/H_{2,1}^{\text{PP}} \le$	0.	.9	0.	95	0.	98	-		
$p_{Tj2}^{PP}/H_{T2,1}^{PP} \ge$	0.	16	0.14		0.13		0.13		
$ \eta_{j1,j2} \leq$	0	.8	1.1		1.4		2.8		
$\Delta_{\rm QCD} \ge$	0.	.1	0.	05	0.0	0			
$p_{\text{PP, T}}^{\text{lab}} / \left(p_{\text{PP, T}}^{\text{lab}} + H_{\text{T}2,1}^{\text{PP}} \right) \le$				0.08					
	RJR-S1a RJR-S1b RJR-S2a RJR-S2b RJR-S3a RJR-S3b						RJR-S4		
$H_{\rm T\ 2,1}^{\rm PP}$ [GeV] >	1000	1200	1400	1600	1800	2100	2400		
$H_{1,1}^{PP} [GeV] >$	800	1000	1200	1200 1400		1700 1900			

Targeted signal		$ ilde{g} ilde{g}, ilde{g} o q ar{q} ilde{\chi}_1^0$								
Requirement		Signal Region								
Kequitement	RJR	R-G1	RJR	R-G2	RJR	RJR-G4				
$H_{1,1}^{PP}/H_{4,1}^{PP} \ge$	0.	45	0	.3	0	.2	-			
$H_{\rm T}^{\rm PP}_{4,1}/H_{4,1}^{\rm PP} \ge$	0	.7	0	.7	0.	65	0.65			
$\min\left(p_{\mathrm{Tj2i}}^{\mathrm{PP}}/H_{\mathrm{T}2,1\mathrm{i}}^{\mathrm{PP}}\right) \geq$	0.	12	0.1		0.08		0.07			
$\max\left(H_{1,0}^{\text{Pi}}/H_{2,0}^{\text{Pi}}\right) \le$	0.96		0.97		0.98		0.98			
$ \eta_{j1,2,a,b} \leq$	1	.4	2.0		2.4		2.8			
$\Delta_{\rm QCD} \ge$	0.	05	0.0)25	0		0			
$p_{z, PP}^{\text{lab}} / \left(p_{z, PP}^{\text{lab}} + H_{T 4, 1}^{PP} \right) \le$	0	.5	0.	55	0	0.65				
$p_{\text{PP, T}}^{\text{lab}} / \left(p_{\text{PP, T}}^{\text{lab}} + H_{\text{T}4,1}^{\text{PP}} \right) \le$		0.08								
	RJR-G1a	RJR-G1b	RJR-G2a	RJR-G2b	RJR-G3a	RJR-G3b	RJR-G4			
$H_{\rm T \ 4,1}^{\rm PP} [{\rm GeV}] >$	1200 1400		1600	2000	2400	2800	3000			
$H_{1,1}^{\text{PP}} [\text{GeV}] >$	7(00	80	00	9(00	1000			

Targeted signal	compressed spectra in $\tilde{g}\tilde{g} \ (\tilde{g} \to q\tilde{\chi}_1^0); \ \tilde{g}\tilde{g} \ (\tilde{g} \to q\bar{q}\tilde{\chi}_1^0)$							
Requirement		S	Signal Regio	n				
Kequitement	RJR-C1	RJR-C2	RJR-C3	RJR-C4	RJR-C5			
$R_{\rm ISR} \ge$	0.95	0.9	0.8	0.7	0.7			
$p_{\rm TS}^{\rm CM} [{\rm GeV}] \ge$	1000	1000	800	700	700			
$\Delta \phi_{\text{ISR, I}}/\pi \geq$	0.95	0.97	0.98	0.95	0.95			
$\Delta \phi(\text{jet}_{1,2}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$	-	-	-	0.4	0.4			
$M_{\rm TS} [{\rm GeV}] \ge$	-	100	200	450	450			
$N_{\rm jet}^{\rm V} \ge$	1	1	2	2	3			
$ \eta_{jV} \leq$	2.8	1.2	1.4	1.4	1.4			

0/1 lepton + B-jets > 3 + E_T^{miss} SR

Strong production all hadronic

Region	Heavy flavor?	Parton multiplicity	Δm	Njet	N_{b-jet}	$H_{\rm T}$ [GeV]	$H_{\rm T}^{\rm miss}$ [GeV]
1	No	Low	Small	≥ 2	0	≥ 500	≥ 500
2	No	Low	Large	\geq 3	0	≥ 1500	≥ 750
3	No	Medium	Small	\geq 5	0	≥ 500	≥ 500
4	No	Medium	Large	≥ 5	0	≥ 1500	≥ 750
5	No	High	All	≥ 9	0	≥ 1500	≥ 750
6	Yes	Low	Small	≥ 2	≥ 2	≥ 500	≥ 500
7	Yes	Low	Large	\geq 3	≥ 1	≥ 750	≥ 750
8	Yes	Medium	Small	\geq 5	\geq 3	≥ 500	≥ 500
9	Yes	Medium	Large	≥ 5	≥ 2	≥ 1500	≥ 750
10	Yes	High	All	≥ 9	\geq 3	≥ 750	≥ 750
11		-like	Small	≥ 7	≥ 1	≥ 300	≥ 300
12		-tike	Large	≥ 5	≥ 1	≥ 750	≥ 750

Table 3: Definition of the aggregate search regions.

ATLAS stop all hadronic

Signal Region		ТТ	TW	TO
	$m_{\text{jet},R=1.2}^{0}$		> 120 GeV	
	$m_{\text{jet},R=1.2}^1$	> 120 GeV	[60, 120] GeV	< 60 GeV
	$m_{\rm T}^{b,\min}$		> 200 GeV	
	N _{b-jet}		≥ 2	
	τ -veto		yes	
	$\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right)\right $		> 0.4	
	$m_{\text{jet},R=0.8}^0$		> 60 GeV	
Α	$\Delta R(b,b)$	> 1	-	
	$m_{T2}^{\chi^2}$	> 400 GeV	> 400 GeV	> 500 GeV
	E ^{miss}	> 400 GeV	> 500 GeV	> 550 GeV
В	$m_{\rm T}^{b,{\rm max}}$		> 200 GeV	
D	$\Delta R(b,b)$		> 1.2	

SRD-low	SRD-high
> (0.4
2	2
> (0.8
> 300 GeV	> 400 GeV
ye	es
> 150) GeV
> 100 GeV	> 80 GeV
> 60	GeV
> 250 GeV	> 350 GeV
> 300 GeV	> 450 GeV
	> 0 \geq > 300 GeV > 300 GeV > 150 > 100 GeV > 60 > 250 GeV

Variable	SRC1	SRC2	SRC3	SRC4	SRC5
N _{b-jet}			≥ 1		
N ^S _{b-jet}			≥ 1		
$N_{\rm jet}^{ m S}$			≥ 5		
$p_{\mathrm{T},b}^{0,\mathrm{S}}$			> 40 GeV		
m _S			> 300 GeV		
$\Delta \phi_{\mathrm{ISR},E_{\mathrm{T}}^{\mathrm{miss}}}$			> 3.0		
$p_{\mathrm{T}}^{\mathrm{ISR}}$			> 400 GeV		
$p_{\mathrm{T}}^{4,\mathrm{S}}$			> 50 GeV		
R _{ISR}	0.30-0.40	0.40-0.50	0.50-0.60	0.60-0.70	0.70-0.80

Variable	SRE
$\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right)\right $	> 0.4
N _{b-jet}	≥2
$\underline{m_{jet,R=0.8}^0}$	> 120 GeV
$m_{\text{iet},R=0.8}^1$	> 80 GeV
$m_{\rm T}^{b,\min}$	> 200 GeV
$E_{ m T}^{ m miss}$	> 550 GeV
H_{T}	> 800 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$> 18\sqrt{\text{GeV}}$

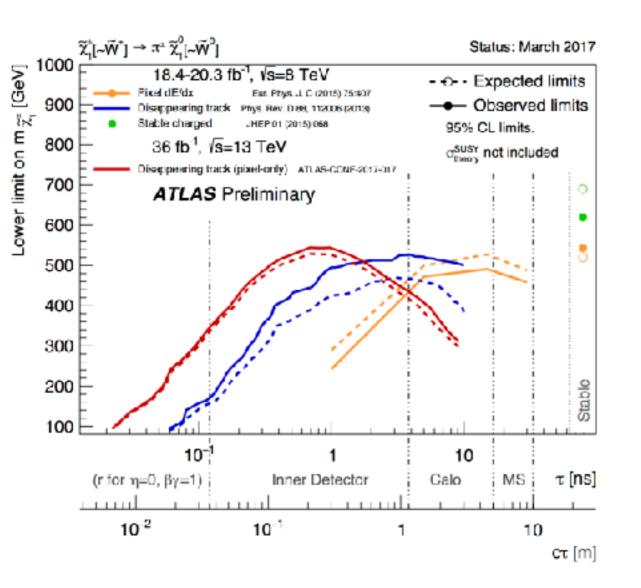
Stop \rightarrow Z, Higgs

CMS

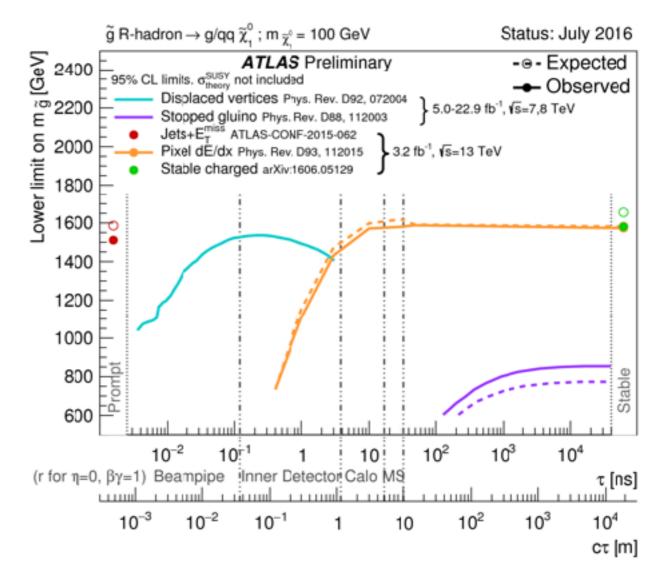
Njets	N _{b jets}	$H_{\rm T}$ (GeV)	$50(70)\mathrm{GeV} \le E_{\mathrm{T}}^{\mathrm{miss}} < 150\mathrm{GeV}$	$150 \mathrm{GeV} \le E_{\mathrm{T}}^{\mathrm{miss}} < 300 \mathrm{GeV}$	$E_{\rm T}^{\rm miss} \ge 300 { m GeV}$
	0	60 - 400	SR1 †	SR2 †	
	0	400 - 600	SR3 †	SR4 †	
	1	60 - 400	SR5	SR6	
≥ 2	L	400 - 600	SR7	SR8	SR16 †
	2	60 - 400	SR9	SR10	
		400 - 600	SR11	SR12	
	≥ 3	60 - 600	SR1]	
	inclusive	≥ 600	SR14 †	SR15 †	

	on-Z	$N_{ m bjets} \leq 2$	$N_{ m b jets} \geq 3$
$M_{\rm T}^{\rm min} > 120 {\rm GeV}$	011-21	$H_{\rm T} \ge 200 {\rm GeV} E_{\rm T}^{\rm miss} \ge 250 {\rm GeV}$	$H_{\rm T} \ge 60 {\rm GeV} E_{\rm T}^{\rm miss} \ge 50 {\rm GeV}$
$T_{T} \geq 12000$	No	SSR1	SSR2
	Yes	SSR3	SSR4

ATLAS Stop → Z, Higgs


Requirement / Region	$SR_A^{3\ell 1b}$	$SR_B^{3\ell 1b}$	$SR_C^{3\ell 1b}$
Number of leptons	≥ 3	≥ 3	≥ 3
$n_{b-\text{tagged jets}}$	≥ 1	≥ 1	≥ 1
$ m_{\ell\ell} - m_Z $ [GeV]	< 15	< 15	< 15
Leading lepton $p_{\rm T}$ [GeV]	> 40	> 40	> 40
Leading jet <i>p</i> _T [GeV]	> 250	> 80	> 60
Leading <i>b</i> -tagged jet <i>p</i> _T [GeV]	> 40	> 40	> 30
$n_{\text{jets}} (p_{\text{T}} > 30 \text{ GeV})$	≥ 6	≥ 6	≥ 5
\tilde{E}_{T}^{miss} [GeV]	> 100	> 180	> 140
$p_{\rm T}^{\ell\ell}$ [GeV]	> 150	_	< 80

$p_{\rm T}^{\ell\ell}$ [GeV]	> 150	_	< 80
Requirement / Region	$\mathrm{SR}^{1\ell4b}_\mathrm{A}$	SR _B ^{1ℓ4b}	$SR_{C}^{1\ell 4b}$
Number of leptons	1–2	1–2	1–2
$n_{b-{\rm taggedjets}}$	≥ 4	≥ 4	≥ 4
$m_{\rm T} [{\rm GeV}]$	_	>150	>125
$H_{\rm T}$ [GeV]	> 1000	_	_
$E_{\rm T}^{\rm miss}$ [GeV]	> 120	> 150	> 150
Leading <i>b</i> -tagged jet $p_{\rm T}$ [GeV]	_	_	<140
m_{bb} [GeV]	95–155	_	_
$p_{\rm T}^{bb}$ [GeV]	> 300	_	_
$n_{\text{jets}} (p_{\text{T}} > 60 \text{ GeV})$	≥ 6	≥ 5	_
$n_{\rm jets} \ (p_{\rm T} > 30 {\rm ~GeV})$	_	_	≥ 7


Long-livedまとめ

チャージーノ質量への制限

グルイーノ質量への制限

最新のDVの結果はまだ入っていない