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BUILDING A MODEL OF THE DATA

Before one can discuss statistical tests, one must have a “model” for the
data.

by “model”, | mean the full structure ot P(data | parameters)

* holding parameters fixed gives a PDF for data
* provides ability to generate pseudo-data (via Monte Carlo)
* holding data fixed gives a likelihood function for parameters

* note, likelihood function is not as general as the full model because it doesn’t allow you to

generate pseudo-data

Both Bayesian and Frequentist methods start with the model
e it's the objective part that everyone can agree on

* it's the place where our physics knowledge, understanding, and intuition
comes in

e building a better model is the best way to improve your statistical
procedure



THE SCIENTIFIC NARRATIVE

The model can be seen as a quantitative summary of the analysis

e |f you were asked to justify your modeling, you would tell a story
about why you know what you know

e based on previous results and studies performed along the
way

e the quality of the result is largely tied to how convincing this story
is and how tightly it is connected to mode|

Common “narrative styles”
e The "Monte Carlo Simulation” narrative
e The "Data Driven” narrative
e The "Effective Modeling” narrative

Real-life analyses often use a mixture of these



Discovery!
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Gaussian Processes
(Eftective Model / Surrogates)

[a tew slides by Dan Foreman-Mackey from DS@LHC |



The anatomy of a transit observation

signal variability noise data

astrophysics and spacecraft


https://indico.cern.ch/event/395374/timetable/#41-scalable-gaussian-processes
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https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets



the data are drawn from one

Gaussian

* the dimension is the number of data points.




GAUSSIAN PROCESSES

where

2
Ko, 0')]7;3' = 0" 0ij + ka(zi, z;)
| —
kernel function
(Where the magic happens)

see: gaussianprocess.org/gpml  github.com/dfm/george



GAUSSIAN PROCESSES

logp(y |z, 0,0, ) =— = [y — fo(x)]' Kalz, o) " [y — fo(x)

N
logdet Ko (x, o) — Bl log 2

l\DIv—\er—

where

Ko (x, J)]ij = 0;°6;; + ka(x;, 1;)

_

kernel function
(Where the magic happens)

see: gaussianprocess.org/gpml  github.com/dfm/george



GAUSSIAN PROCESSES
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GAUSSIAN PROCESSES —

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets
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SEARCHING OVER SPACE OF MODELS

Vocabulary of kernels + grammar for

composition

e physics goes into the construction of

a "Kernel” that describes covariance

of data

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013

pdf | code | poster | bibtex

(explGG+G) e GG+ G
dependent gaussian scale mixture
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binary matrix factorization (€ xp(G) e G)G + G

(Meeds et al, 2006) spamse coding
\ ’ (c.g. Okhausen and Field, 199%)
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(Griffiths and (Salakbet dmov and
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Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex

Mauna Loa atmospheric CO5
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GAUSSIAN PROCESSES AT LHC with Meghan Frate

Instead of fitting the dijet spectrum with an ad hoc 3-5
parameter function, use GP with kernel motivated from physics
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Likelihood-free Intference /
Simulation-based Implicit Models



PARTICLE PHYSICS: 19 PARAMETERS
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Symbol Description Value
Me Electron mass 511 keV
my Muon mass 105.7 MeV
m- Tau mass 1.78 GeV
mu Up quark mass 1.9 MeV
My Down quark mass 4.4 MeV
M Strange quark mass 87 MeV
mMe Charm quark mass 1.32 GeV
mp Bottom quark mass 4.24 GeV
mk Top quark mass 172.7 GeV
61> CKM 12-mixing angle 13.1°
623 CKM 23-mixing angle 2.4°
613 CKM 13-mixing angle 0.2°
o CKM CP-violating Phase 0.995
g1 U(1) gauge coupling 0.357
Q- SU(2) gauge coupling 0.652
g3 SU(8) gauge coupling 1.221
Baco QCD vacuum angle ~0
4 Higgs vacuum expectation value 246 GeV
my Higgs mass 125 GeV



https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
https://en.wikipedia.org/wiki/CP_violation
https://en.wikipedia.org/wiki/Vacuum_angle

COSMOLOGY: 6 PARAMETERS

Dark Energy The Cosmic Microwave Background
Accelerated Expansion . .
Afterglow Light A Gaussian Process in the Sky
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.
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L Big Bang Expansion N
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Multipole moment, ¢
Symbol Description Value 9 20100 LW 2000
Qe Physical Baryon Density Parameter 0.02230 + 0.00014 %
=
O
QcH? Physical Dark Matter Density Parameter | 0.1188 + 0.0010 ‘§
©
To Age Of The Universe 13.799 + 0.021 x 102 Years =
o
Ns Scalar Spectral Index 0.9667 + 0.0040 8
)
Q
Az Curvature Fluctuation Amplitude 2441 +0.09 x 10-° g
}_
S . 0.2
T Reionization Optical Depth 0.066 +0.012 Angular scale



https://en.wikipedia.org/wiki/Age_of_the_universe
https://en.wikipedia.org/wiki/Reionization
https://en.wikipedia.org/wiki/Optical_depth

THE PLAYERS

forward modeling
generation
simulation

(z: latent variables)

0

parameters of interest
X

observed data

covariates
Vv
nuisance parameters

simulated data

inverse problem

measurement
parameter estimation



THE FORWARD MODEL
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THE FORWARD MODEL
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energy collisions
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hierarchical: 2 = O(10) = O(100) particles
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THE FORWARD MODEL
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THE FORWARD MODEL
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hierarchical: 2 = O(10) = O(100) particles

3 The interaction of outgoing particles
with the detector is simulated.

>100 million sensors
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THE FORWARD MODEL
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hierarchical: 2 = O(10) = O(100) particles

3 The interaction of outgoing particles
with the detector is simulated.

>100 million sensors

Finally, we run particle identification and
feature extraction algorithms on the simulated
data as if they were from real collisions.

~10-30 features describe interesting part

18



DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable
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DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorit
likelihood-free inference, which on

nms for what is called

y require ability to

generate samples from the simulation in the “"forward mode”



10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable or feature

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable or feature

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!



ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



‘Likelihood-Free’ Inference

Rejection Algorithm

@ Draw 6 from prior 7(-)
@ Accept 6 with probability (D | 6)

Accepted 6 are independent draws from the posterior distribution,
(0 | D).
If the likelihood, 7(D|0), is unknown:

‘Mechanical’ Rejection Algorithm

@ Draw 6 from 7 (-)
@ Simulate X ~ f(#) from the computer model

@ Accept 0 if D = X, i.e., if computer output equals observation

The acceptance rate is [ P(D|0)x(0)d0 = P(D).

*From Richard Wilkinson’s talk at Data science @ LHC



Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there Is an approximate version:

Uniform Rejection Algorithm
@ Draw 6 from m(0)
e Simulate X ~ f(6)
@ Accept 0 if p(D, X) < ¢

e reflects the tension between computability and accuracy.

@ As € — 00, we get observations from the prior, 7(6).

o If e =0, we generate observations from 7 (6 | D).

For reasons that will become clear later, we call this uniform-ABC.

*From Richard Wilkinson’s talk at Data science @ LHC



C O M P A R | S O N Taxonomy of Gfﬁnerative Models

Direct
G E N E RAT I 0 N Maximum Likelihood E

Explicit density Implicit density

p(x|6)

INFERENCE

Goal is to likelihood- , Generator
. O inference
estimate free o(x|0)

ABC p(0 | xo) yes approximate

BBV p(0,z | x)

approximate

AEVB
on @ not 6

surrogate
c-GAN surrogate

NVP/IAF surrogate

simulation@ 04
CARL p(X | 6)/p(x | 91) X importance

sampling to O

“c-NVP" ol surrogate

via bijections x(z|0)




CARL SOFTWARE http://diana-hep.org/carl/

0O (< (M ® & = diana-hep.org ¢ (4] 0y )
i3t DiscoverylLinks v  Higgs v RooStats v ALEPH v Apple v News v Life Stuff v ATLAS Wikipedia, inSpire Theory&Practice v nyuespace JCSS HCG v >
n I I G I | | Meet Ii Jupyter Note... | Weekend rea... | early-career-... I 2016 Electio... 12-day Event... | Joint meetin... I carl APl doc... ’T
e carl module
Sub-modules

(o]

o]

carl.data
carl.distributions
carl.learning

carl.ratios

Notebooks

Composing and fitting
distributions
Diagnostics for
approximate likelihood
ratios

Likelihood ratios of
mixtures of normals
Parameterized inference
from multidimensional
data

Parameterized inference
with nuisance parameters

Display a menu

carlisatoolbox for likelihood-free inference in Python.

The likelihood function is the central object that summarizes the information from an experiment
needed for inference of model parameters. It is key to many areas of science that report the results
of classical hypothesis tests or confidence intervals using the (generalized or profile) likelihood
ratio as a test statistic. At the same time, with the advance of computing technology, it has become
increasingly common that a simulator (or generative model) is used to describe complex processes
that tie parameters of an underlying theory and measurement apparatus to high-dimensional
observations. However, directly evaluating the likelihood function in these cases is often
impossible or is computationally impractical.

In this context, the goal of this package is to provide tools for the likelihood-free setup, including
likelihood (or density) ratio estimation algorithms, along with helpers to carry out inference on top
of these.

This project is still in its early stage of development. Join us on GitHub if you feel like contributing!

build 'passing | coverage '91% | DOI 10.5281/zenodo.47798

Likelihood-free inference with calibrated classifiers

Extensive details regarding likelihood-free inference with calibrated classifiers can be found in the
companion paper "Approximating Likelihood Ratios with Calibrated Discriminative Classifiers’, Kyle
Cranmer, Juan Pavez, Gilles Louppe. http://arxiv.org/abs/1506.02169

Installation

The following dependencies are required:

e Numpy>=1.11




ierarchical Graphical Models



"LA MIA PARABOLA”

Information

Analysis

Simulation Reconstruction
Comparison
&:
: Particles

: candidates

Track
segments
Summable digits
Digits Rgconstructed
: points
: - >
Rawedata Processing

Figure by Federico Carminati, independent parallel inventions by Vincenzo Innocente & K.C.



FULL SIMULATION

nuisance
parameters

measured
parton
density

functions, etc.

detector
design,
alignment

measured

Ve

Events ~1 0-| 5

P
partons ~10

momenta,
particle type

.
\
p
hadrons ~100
\
momenta,
particle type

/

.

p
\ sensors 108

energy

interactions
with matter

calibration

deposit

\4

Ve

sensor readout 10

T

constants

raw data

8

nuisance
parameter

variable

observed
covariate

derived
quantities

I 1
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
! latent !
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
] ]
] ]
] ]
] ]
] ]
| |
] ]
\ /7




FULL SIMULATION
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FULL SIMULATION + RECONSTRUCTION

parameter
estimates,
likelihood,
posterior
s 1 A .
1
Events ~101° | |
I I
I I
4 event-level ! |
1 ) features ! |
partons ~10 ! !
| |
I I
I
momenta, | i
particle type ! |
I
. I I
jets ~10 ! !
i i
L J | |
momenta, | : |
Summary : nuisance :
stats ! parameter :
i |
v ! !
nuisance (- A | |
parameters hadrons ~100 ! [
I
— | :
I I
I I
momenta, reconstructed particles ~100 ! !
particle type P ! Iat_eg: !
! variaple !
measured | — i |
I I
g:r:tsci)tr;/ momenta ! :
functions, etc. N~ o particle type : :
| |
I I
I I
I I
I I
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I I
I I
AEEEE clusters ~100 tracks ~100 ! !
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v energy, momenta, | |
\f 8 h summary impact ! !
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interactions —> deposit | |
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HIERARCHICAL GRAPHICAL MODELS IN ASTRONOMY

celestial
body P X

galaxy
@ L profile
—@ A @
@7

I

point spread
function

. C_}fnb
. g'n.b
. 7_-n,b

Lnbm

Celeste: Variational inference for a generative model of
Regler, et al 334 ICMLR, 2016 astronomical images



Learning
Generative Models / Implicit Models



VARIATIONAL AUTO-ENCODER [Slides from D. Kingma NIPS 2015]

Auto-Encoding Variational Bayes

[Kingma and Welling, 2013/2014]
[Rezende et al, 2014]

Diederik (Durk) Max
Kingma Wellin
= q,(zlx) = N(p,o?) J 9

lu, o] = f“M(x,¢) = multilayer neural net

© = Objective: lower bound of log p(x).
/ m Jointly optimized w.r.t. ¢ and ©

m This is approx. maximum likelihood
m Simple SGD:

m Sampling small minibatches of data
m Sampling from approx. posterior Conv. net as encoder/decoder,

trained on faces

m This also minimizes an expected KL
divergence

D1 (qq(z[x)||[p(z[x))

-> gives us cheap approx. inference for new
datapoints

L —

———

Kingma and Welling, Auto-encoding Variational Bayes, ICLR 2014
Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep latent Gaussian
models, ICML 2014



http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
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WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
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Goodfellow, et al arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS e e e

generated distribution true data distribution
A

P(X)

\

unit gaussian

generative
O model .
(neural net) +._[loss

/
7/
’
Z S 7
S A

image space image space

e Two-player game:
m a discriminator D,
m a generator G;
e D is a classifier X — {0,1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for X ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Zn~ pnoise);
e G is a generator Z +— X trained to produce samples G(z) (for
Z ~ Pnoise) that are difficult for D to distinguish from data.

(D*, G*) = max min V(D, G).

Leo is G Tom is D



GENERATED IMAGES

volcano



LEARNING THE (SIMULATED)

Noise ~ N(0,1)

-
NG
vl o

=
{l

http://torch.ch/blog/2015/11/13/gan.html

(Generative
Model

DATA DISTRIBUTION

I I 1 1 | | | |
om m 2m im 4m 5m 6m /m
Key:
Muon
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

» Electromagnetic
)“' Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Transverse slice
through CMS

Iron return yoke interspersed

with Muon chambers

D.Bamey, CERN, Febriwwy 2004



GANS FOR PHYSICS

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters

Creating Virtual Universes Using Generative Adversarial Networks

. . . Mustafa Mustafa*!, Deborah Bard!, Wahid Bhimji', Rami Al-Rfou?, and Zarija Luki¢!
with Generative Adversarial Networks

Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Google Research, Mountain View, CA 94043

Michela Paganini®’, Luke de Oliveira®, and Benjamin Nachman®

¢ Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
® Department of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch
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Figure 9: Five randomly selected e showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 10: Five randomly selected  showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 11: Five randomly selected 7+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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GENERATIVE MODELS FOR CALIBRATION

U .F .t d | .F Enabling Dark Energy Science with Deep
Se O g e n e ra IVe m O e S O Generative Models of Galaxy Images
o o Siamak Ravanbakhsh', Frangois Lanusse?, Rachel Mandelbaum?, Jeff Schneider', and Barnabds Péczos'
| h | | b T oty G G e eion Onitity
9 a axy I m a g eS to e p Ca I rate Abstract—Understanding the nature of dark energy, the mys-
. terious force driving the accelerated expansion of the Universe, is

n ext_ g e n e ra t| O n S u rvey S . a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

L
- .
.
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Adversarial Training for Systematics
(aka Domain Adaptation)



LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to
minimize loss L.

normal training

e want classifier output to be 30 10
. . e . 2.5 0.9
Insensitive to systematics 0s

2.0
(nuisance parameter v) s 07
) 1.0 0.6
* introduce an adversary r that | 05
0.4
tries to predict v based onf. oo N
.. -0.5 0.2
® setup as a minimax game: I o

-1.0-0.5 0.0 0.5 1.0 1.5 2.0

9},6’; = arg minmax E(0¢,0,). 4.0

s r 3.5}
E>\(0f797“) :Ef(ef) _>\£7"(9f70’r‘) 30l
2.5}
50|
s T sl
‘?E’Z 1.01-f
By 0.5}

0.%. C

0.2

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

adversarial training

3.0

1.5

1.0

0.5

0.0

-0.5

_191.0 —0.5 0.0 0.5 1.0 1.5 2.0

4.0

0.84

0.72

0.60

0.48

0.36

0.24

0.12




LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to
minimize loss L.

e want classifier output to be 30 g Lo 30
. . . X1 B 7 0.9 2.5
Insensitive to systematics ©plv 0
2.0 Vet 2.0
(nuisance parameter v) 15 °T s
) 1.0 ko oo 1.0
* introduce an adversary r that . °s
0.4
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4.0
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G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046




G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

AN EXAMPLE

Technigue allows us to tune A, the tradeoft between
classification power and robustness to systematic uncertainty

3 .
A=0Z=0
. 7F A=0
An example: L

background: 1000 QCD jets

-
o
Qv
O 6
° I U)
signal: 100 boosted W's o .|
S
e
Train W vs. QCD classitier kS
=
O
. wn
Simple cut-and-count T 2l I e N
= |
. . )
analysis with background o |\~ 7 e
uncertainty. 1
8 O SOOI USSR SO SO
_1 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

threshold on f(X)



From oft-the-shelf algorithms
to physics-aware algorithms

Example: Jet Substructure



JET SUBSTRUCTURE

Many scenarios tfor physics Beyond the Standard Model
include highly boosted W, Z, H bosons or top quarks

Low top pt High top pt

|dentifying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b N /_I:;// 0 % Rii
Ne= Y=\
mass drop ilter ﬂ




Oliveira, et. al arXiv:1511.05190

J E T | M A G E S Whiteson, et al arXiv:1603.09349

Dawe, et al arXiv:1609.00607

Last year deep learning algorithms applied to “jet images”
e based on ftast simulation & idealized unitorm calorimeter

e preprocessed to recenter (N, ) & rotatea

Average Boosted W Jet Average QCD Jet
c = 2 F ’ : 10° =
~ ) ~ )
<@ ©) Q< ©)
(®)] — (®)] —
< a” g "
g £ 3 £
= o = o
£ E
N N
< <
g g
s s
n n
& S
= S

- - e, |, R -
1 -05 0 0.5 1 10° 4 -05 0 0.5 1 10°

[Translated] Pseudorapidity (n) [Translated] Pseudorapidity (n)


http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190

Oliveira, et. al arXiv:1511.05190

J E T | M A G E S Whiteson, et al arXiv:1603.09349

Dawe, et al arXiv:1609.00607

Inspecting the classitier shows parts of image that favor the
W= jj interpretation are consistent with physics intuition

e W-like QCD-like

Average Boosted W Jet Average QCD Jet

T

Pixel p_[GeV]
T

Pixel p_ [GeV]

[Translated] Azimuthal Angle (¢)
[Translated] Azimuthal Angle (¢)

-1 -0.5”'0””0.5 1
[Translated] Pseudorapidity (n) [Translated] Pseudorapidity ()

-1 -0.5 0 0.5 1


http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190

EXPLOITING SYMMETRY [Slides by Max Welling]

Physics is ripe with symmetries, we should incorporate that

<nowledge into our models

o difficulty: often detector breaks symmetries

Symmetry in Deep Learning

What makes CNNs so effective?

+ Weight sharing: exploits translation symmetry

= Depth: exploits equivariance

Network design principle:
Equivariance to symmetry transformations

R

Conv vs G-Conv

Planar Convolution

“translate filter and compute inner product”

Translation

Tof(z) = f(z - s)

Ton) M =

Z2-Convolution

IROESY me)[Tszb]k(x

z€Z? k=1

Group Convolution

“transform filter and compute inner product”

Transformation

T:f(z) = f(r~'z)

G-Convolution

[f*¥)(g) =) ka(x)[Tgw]k(x)

z€Z? k=1



http://iop.uva.nl/content/events/lectures/2017/00/iop-colloquium-max-welling-ivi-uva.html

FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

NP VP

N

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG PP

N

going TO NP

N\

to DT NN

the dentist




FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: | N

going TO NP

word — particle N

to DT NN

arsing — jet algorithm
p g J 9 tr|1e denltist




QCD-INSPIRED RECURSIVE NEURAL NETWORKS

k ‘ N t k ¢ e
‘ -~\‘\‘\‘_\\ - / ’ .

\\\ - —
oy ~ A . —— 'Y X
. \ o e e )
,

T bt » e oo
o O ® ‘@ ‘® ® 9 , ®

el

Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot N
(arXiv:1702.00748) A

e Use sequential recombination jet algorithms to
orovide network topology (on a per-jet basis) R R

e path towards ML models with good physics properties 777 -

e Top node of recursive network provides a fixed-length
embedding of a jet that can be fed to a classitier A



EVENT EMBEDDINGS

Jointly optimize jet embedding = event embedding — classifier

It scales!
Event embedding Classifier
v(t1) v(tz2) v(tm)
n'(e)
hy(ty) hy (t2) hy (tar)

Jet

embeddings

Vi V2 V3 V4 Vs Ve v7 VN-1 VN




SEARCHING OVER SPACE OF MODELS

Mauna Loa atmospheric CO5

Using a class of models known as Gaussian

(Lin x SE + SE x (Per + RQ))

Processes to model data

40

20

e physics goes into the construction of a

T T T T T T T T T T T
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

"Kernel” that describes covariance of data -

Vocabulary of kernels + grammar for composition =
T 960 1965 1970 1975 1980 ::és 1990 1995 2000 2005 2010

(explGG+G) e GG+ G

(MG +G)GM LI G+ G dependent gaussian scale mixture
. e o K - 0%
| Bayesian clustered tensar factorization (c.g. Karklin "'"‘l*"“ icki, 2005) oA
(Sutskeveret al, 2009) . . .
| R B(GB™ 4+ G)+G Ly
. 1 bimary matrix factorization (€Xp{G) 0 G)G + G see

(Meeds et al_, 2006) sparse coding -5
\ f (c.g. Obkhausen and Field, 1996)

M(GM™ +G)+G (CC+C\C+G
ey, BG +G GG+G lincar dynamical system 1984 1985 1086 1987 1988 1989
(e.2. Kemp et al,, 2006) binary features  low-rnmk Aw;um.m:.u-./'
\ (Griffiths and (Salakbet dmov and +
o Ghahramani, 205) Muadk, 2008) /
’ \"(. (,/ CC+G . SE x RQ
s random walk |
| clustering / |
\ G ol ‘

no structure |
’ WW

|

|

|

|

Structure Discovery in Nonparametric Regression Exploiting compositionality to explore a large space of 21

through Compositional Kernel Search model structures -——
David Duvenaud, James Robert Lloyd, Roger Grosse, Roger Grosse, Ruslan Salakhutdinov, William T. +

Joshua B. Tenenbaum, Zoubin Ghahramani Freeman, Joshua B. Tenenbaum 0.51 resuae

International Conference on Machine Learning, 2013 Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | poster | bibtex pdf | code | bibtex 0 ﬁ{ ,

T T — T T T T T T T T
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010



From Reproducibility
To Reusability

[work with Lukas Heinrich]



REINTERPRETATION

. Accelerating the BSM interpretation of LHC data with machine learning
The BSM-AI project: | | .
Gianfranco Bertone,! Marc Peter Deisenroth,? Jong Soo Kim,?

S U SY_AI —_ generalizing L H C Iimits on Sebastian Liem,! Roberto Ruiz de Austri, and Max Welling®

LGRAPPA, Umvergity of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands

. . . Department of Computing, Imperial College London,

supersymmetry with machine Iearnmg 180 Queen’s Gate, SW7 2AZ London, United Kingdom
3 Center for Theoretical Physics of the Universe,

Institute for Basic Science (IBS), Daejeon, 34051, Korea and
Instituto de Fisica Tedrica UAM/CSIC, Madrid, Spain
*Instituto de Fisica Corpuscular IFIC-UV/CSIC, Valencia, Spain

5 Informatics Institute, University of Amsterdam,

Sascha Caron,a’b JOI’Ig Soo Kim,* KrZySZtOf ROIbieCkind Science Park 904, 1098 XH Amsterdam, Netherlands
Roberto Ruiz de Austri,© Bob Stienen (Dated: November 10, 2016)
a Institute for Mathematics, Astro- and Particle Physics IMAPP, Radboud Universiteit, The interpretatiog of.Large Hadron Collider (LHC) data in the framework of Beyond the Standard
B Model (BSM) theories is hampered by the need to run computationally expensive event generators
Nijmegen, The Netherlands and detector simulators. Performing statistically convergent scans of high-dimensional BSM theories

is consequently challenging, and in practice unfeasible for very high-dimensional BSM theories. We
present here a new machine learning method that accelerates the interpretation of LHC data, by
learning the relationship between BSM theory parameters and data. As a proof-of-concept, we
demonstrate that this technique accurately predicts natural SUSY signal events in two signal regions
at the High Luminosity LHC, up to four orders of magnitude faster than standard techniques. The
new approach makes it possible to rapidly and accurately reconstruct the theory parameters of

®Instituto de Fisica Corpuscular, IFIC-UV/CSIC, Valencia, Spain complex BSM theories, should an excess in the data be discovered at the LHC.

b Nikhef, Amsterdam, The Netherlands
Instituto de Fisica Tedrica UAM/CSIC, Madrid, Spain

dFaculty of Physics, University of Warsaw, Warsaw, Poland

Classification from data
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It’s the difference between if yoil had airplanes
ou threw away an airplane after every flight,

. where y

versus you could reuse them multiple times.
' — Elon Musk
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Technical Solution:
Workflow (i.e. logic which steps to run in which order: reconstruction — analysis— fit)

e in easy to write / read text based format (YAML)

e generic workflow language “yadage” based on graphs. No assumption on how you
run your analysis. Should be able to accommodate your workflows.

¢ integrated into CERN Analysis Preservation.

e re-run workflow using tool that interprets info stored in CAP

workflow software data P AP

‘Analysis'l‘ | . |
eventsel.yml jll docker img @ data, bkgds = e

| | t I d (:er' | m ublieaie
-I. m O Lorem ipsum dolor sit amet, . consectetur adipiscing 3
y y g it. Integer nec odio. Praesent libero. . Modell & John Doe
DF.
lepjc/s10052-016-4286-3
1Plot

workflow.yml

adipiscing elit. Integer nec odio.
Praesent libero.

import analysis
workflow

CERN
https://arxiv.org/pdf/1706.01878.pdf Analysis Preservation

56



SOFTWARE

Yadage and Packtivity — analysis preservation using

parametrized workflows

Kyle Cranmer' and Lukas Heinrich!
! Department of Physics, New York University, New York, USA

E-mail: lukas.heinrich@cern.ch

Abstract. Preserving data analyses produced by the collaborations at LHC in a parametrized
fashion is crucial in order to maintain reproducibility and re-usability. We argue for a declarative
description in terms of individual processing steps — “packtivities” — linked through a dynamic
directed acyclic graph (DAG) and present an initial set of JSON schemas for such a description
and an implementation — “yadage” — capable of executing workflows of analysis preserved via

Linux containers.

N
8
&
"

& GitHub, Inc. ¢ O i a E
1]

yadage - yaml based adage

A declarative way to define adage workflows using a JSON schema (but we'll always write it as YAML)

docker run —rm -it -v /var/run/docker.sock:/var/run/docker.sock -v $PWD:$PWD -w $PWD lukasheinrich/yad:
yadage-run -t from-github/phenochain mdwork madgraph_delphes.yml -p nevents=100

or just

eval "$(curl https://raw.githubusercontent.com/diana-hep/yadage/master/yadagedocker.sh)"
yadage-run -t from-github/phenochain mdwork madgraph_delphes.yml -p nevents=100

This package reads and executes workflows adhering to the workflow JSON schemas defined at https://github.com/diana-
hep/cap-schemas such as the onces stored in the community repository https://github.com/lukasheinrich/yadage-
workflows. For executing the individual steps it mainly uses the packtivity python bindings provided by
https://github.com/diana-hep/packtivity.

Possible Backends:

Yadage can run on various backends such as multiprocessing pools, ipython clusters, or celery clusters. If human
intervention is needed for certain steps, it can also be run interactively.

Example Workflow

@ reana.readthedocs.io (@)

stages:
- name: hello_world

https://arxiv.org/pdf/1706.01878.pdf

REANA - Reusable Analyses
Navigation

1. Introduction

2. Installation

3. Getting started
4. Examples

5. Architecture
6. Components
7. Contributing
8. Changes

9. License

10. Authors

REANA@DockerHub
REANA@GitHub

Quick search

Go

REANA - Reusable Analyses

build ‘passing § coverage 100% Issues ready for work "2'] gitter ‘join chat
license GNU General Public License v2.0

REANA is a system that permits to instantiate research data analyses on the cloud. It
uses container-based technologies and was born to target the use case of particle
physics analyses in LHC collaborations. The system paves the way to reusing and rein-
terpreting preserved data analyses even several years after the original analysis.

¢ 1. Introduction

o 1.1. About

o 2.4. Initialising cloud
* 3. Getting started

o 3.1. About
o 3.2. Install minikube

o 3.5. Initialise REANA cloud
o 3.6. Run “hello world” example application
o 3.7. Run “word population” example analysis
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A framework for extending the impact of existing analyses performed by
high-energy physics experiments.
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How it works
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given analysis is "recast" for an alternative model.

Note: this is a request, there is no obligation for the experiments to
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Introduction

This is an early prototype for the RECAST control center. While the RECAST front-end at

web application is used to launch jobs for different back-ends that actually perform the reinterpretation

It supports CERN SSO authentication which will allow for fine-grained control over which users are able to launch
the reinterpretation jobs and/or upload the results to the front-end. This web application provides a plugin model
for analyses. Currently, we have a template plugin for Rivet analyses that runs quickly. We are working with CERN
IT's analysis prese product to provide a ion basedon the full simulation

and event

plugin for reinte

For convenience, cne can Initiate a request directly from the control center, which will be uploaded to the front-end.

Instructions
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you want to recast. Alternatively you can also create a request on the RECAST front-end (currently the
development instance)
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Bayesian optimisation Where shall we sample next?
fort=1:T, .
1. Given observations (x;j, y;) for i =1 : t, build a probabilistic o o orue (unknown)
model for the objective f. Lo|
m Integrate out all possible true functions, using Gaussian K \\
process regression. 05f ,;' Y
2. Optimise a cheap utility function u based on the posterior ~ . N /' i .
. . . . . X 00k -=-—-—-____ - . , \ == __0]
distribution for sampling the next point. = \ ; "
-0.5} \‘\ /’I -
Xe+1 = arg max u(x) -
X N\ //
-1.0 -
Exploit uncertainty to balance exploration against exploitation.
-1.5

3. Sample the next observation y;;1 at Xi41. 20 s o -os 5o o5 1o 15 20
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Bayesian optimisation Build a probabilistic model for the objective function
fort=1: T, " I I I I I - True (Iunknown)
1. Given observations (x;, y;) for i =1 : t, build a probabilistic Lol °* S:Zi;vatms
model for the objective f. <
m Integrate out all possible true functions, using Gaussian osf /’,,___\*’ \\\
process regression. S ; \\\ \
. . age . . ,,3_ 00k - _ _ _ _ -7 \\ II S \\ ,/———::,.:,
2. Optimise a cheap utility function u based on the posterior . , \ &

distribution for sampling the next point. ' ,

-0.5|

Xe+1 = arg max u(x)
X

=10}

Exploit uncertainty to balance exploration against exploitation. 15

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

3. Sample the next observation y;;1 at Xi41.

This gives a posterior distribution over functions that could have
generated the observed data.
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Bayesian optimisation

fort=1:T,

1. Given observations (x;j, y;) for i =1 : t, build a probabilistic
model for the objective f.

m Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

Xe+1 = arg max u(x)
X

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y;;1 at Xi41.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

e Upper confidence bound UCB(x) = pgp(x) + kogp(x);

e Probability of improvement Pl(x) = P(f(x) > f(x;") + k);

e Expected improvement El(x) = E[f(x) — f(x;")];

e ... and many others.

where x;" is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., k) for
controlling the exploration-exploitation trade-off.

e Search in regions where pgp(x) is high (exploitation)

e Probe regions where uncertainty ogp(x) is high (exploration)

[slides from Gilles Louppe]

Build a probabilistic model for the objective function

15

— - True (unknown)
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~. Cl
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This gives a posterior distribution over functions that could have
generated the observed data.
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Plugging everything together (t = 0)
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Xe+1 = arg max, UCB(x)
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Bayesian optimisation

fort=1:T,

1. Given observations (x;j, y;) for i =1 : t, build a probabilistic
model for the objective f.

m Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

Xe+1 = arg max u(x)
X

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y;;1 at Xi41.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

e Upper confidence bound UCB(x) = pgp(x) + kogp(x);

e Probability of improvement Pl(x) = P(f(x) > f(x;") + k);

e Expected improvement El(x) = E[f(x) — f(x;")];

e ... and many others.

where x;" is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., k) for
controlling the exploration-exploitation trade-off.

e Search in regions where pgp(x) is high (exploitation)

e Probe regions where uncertainty ogp(x) is high (exploration)

[slides from Gilles Louppe]

Build a probabilistic model for the objective function
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This gives a posterior distribution over functions that could have
generated the observed data.

. and repeat until convergence (t = 1)
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Bayesian optimisation

fort=1:T,

1. Given observations (x;j, y;) for i =1 : t, build a probabilistic
model for the objective f.

m Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

Xe+1 = arg max u(x)
X

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y;;1 at Xi41.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

e Upper confidence bound UCB(x) = pgp(x) + kogp(x);

e Probability of improvement Pl(x) = P(f(x) > f(x;") + k);

e Expected improvement El(x) = E[f(x) — f(x;")];

e ... and many others.

where x;" is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., k) for
controlling the exploration-exploitation trade-off.

e Search in regions where pgp(x) is high (exploitation)

e Probe regions where uncertainty ogp(x) is high (exploration)
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Build a probabilistic model for the objective function

15
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This gives a posterior distribution over functions that could have
generated the observed data.

. and repeat until convergence (t = 2)
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Bayesian optimisation

fort=1:T,

1. Given observations (x;j, y;) for i =1 : t, build a probabilistic
model for the objective f.

m Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

Xe+1 = arg max u(x)
X

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y;;1 at Xi41.

4/17
Acquisition functions
Acquisition functions u(x) specify which sample x should be tried
next:
e Upper confidence bound UCB(x) = pgp(x) + kogp(x);
e Probability of improvement Pl(x) = P(f(x) > f(x;") + k);
e Expected improvement El(x) = E[f(x) — f(x;")];
e ... and many others.
where x;" is the best point observed so far.
In most cases, acquisition functions provide knobs (e.g., k) for
controlling the exploration-exploitation trade-off.
e Search in regions where pgp(x) is high (exploitation)
e Probe regions where uncertainty ogp(x) is high (exploration)
7/17
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Build a probabilistic model for the objective function
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This gives a posterior distribution over functions that could have
generated the observed data.

. and repeat until convergence (t = 3)
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Bayesian optimisation

fort=1:T,

1. Given observations (x;j, y;) for i =1 : t, build a probabilistic
model for the objective f.

m Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

Xe+1 = arg max u(x)
X

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y;;1 at Xi41.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

e Upper confidence bound UCB(x) = pgp(x) + kogp(x);

e Probability of improvement Pl(x) = P(f(x) > f(x;") + k);

e Expected improvement El(x) = E[f(x) — f(x;")];

e ... and many others.

where x;" is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., k) for
controlling the exploration-exploitation trade-off.

e Search in regions where pgp(x) is high (exploitation)

e Probe regions where uncertainty ogp(x) is high (exploration)

[slides from Gilles Louppe]

Build a probabilistic model for the objective function
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This gives a posterior distribution over functions that could have
generated the observed data.

. and repeat until convergence (t = 4)
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Bayesian optimisation

fort=1:T,

1. Given observations (x;j, y;) for i =1 : t, build a probabilistic
model for the objective f.

m Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

Xe+1 = arg max u(x)
X

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y;;1 at Xi41.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

e Upper confidence bound UCB(x) = pgp(x) + kogp(x);

e Probability of improvement Pl(x) = P(f(x) > f(x;") + k);

e Expected improvement El(x) = E[f(x) — f(x;")];

e ... and many others.

where x;" is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., k) for
controlling the exploration-exploitation trade-off.

e Search in regions where pgp(x) is high (exploitation)

e Probe regions where uncertainty ogp(x) is high (exploration)
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Build a probabilistic model for the objective function
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This gives a posterior distribution over functions that could have
generated the observed data.

. and repeat until convergence (t = 5)
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SOFTWARE

ece < > M L] = & scikit-optimize.github.io ¢ (4] ] 2 H
Index
skopt module
e Python Functions
- Spearmint https: //github com/JasperSnoek/spearmint 4 o Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive
B GPyOpt https: /./github c.om/SheffieldML/GPyOPt ¢ dummy_mlnlmlze and noisy black-box functions. It implements several methods for sequential model-
: . o dump A . : :
B RoBO https://github.com/automl/RoBO o expected minimum based optimization. skopt is reusable in many contexts and accessible.
B scikit-optimize https://github.com/MechCoder/scikit-optimize o forest minimize

(work in progress) o gbrt_minimize

o C—|——|— ° gp_minimize |nsta“
B MOE https://github.com/yelp/MOE ° load

pip install scikit-optimize
Classes

o Optimizer

Getting started

Sub-modules ! . . ) )
Find the minimum of the noisy function £ (x) over therange -2 < x < 2 with skopt:

o skopt.acquisition

o skopt.benchmarks .

import numpy as np
o skopt.callbacks L.

from skopt import gp minimize
o skopt.learning
o skopt.optimizer

P P def f(x):
o skopt.plots .
return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] **

o skopt.space 2)) *

np.random.randn() * 0.1)

Notebooks

o Askand tell res = gp_minimize(£f, [(-2.0, 2.0)])
o Bayesian optimization

TOP o Hyperparameter For more read our introduction to bayesian optimization and the other examples.

GitHub Repo tor previous slides:
https://github.com/glouppe/talk-bayesian-optimisation
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Putting it all together

https://github.com/cranmer/active_sciencing


https://github.com/cranmer/active_sciencing

SYNTHESIS

active learning / sequential design / black box optimization

Active Sciencing

simulation-based

reusable workflows inference engines
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ACTIVE SCIENCING DEMO

Input:

e workflow for performing “real” experiment that returns data

e workflow for running simulator given parameters of theory and

experimental configruration

Demo shows use of likelihood-free inference technique & Bayesian
Optimization to measure the Weinberg angle and optimize beam energy
(eg. just above or below M,/2)

Bm data 1.5 1

6_
1.0 -

4 -
0.5 -

2 -
0- 0.0 -

-1 0 1

% 1.5 4
| 1.0 A
. 0.5 A
—— prior
——— posterior
— MAP 0.0
—— truth
{ 1 T 1 T T
1.0 1.5 40.0 425 450 47.5 50.0
—
1.00 A
0.75 1\
0.504
Pfor . 0.25 A
——— posterior
— MAP -
0.00 N y
—— truth SN S
T L T 1_025 ] T "l T
0.5 1.0 1.5 40.0 425 450 47.5 50.0

Figure 2: Measured forward-backward asymmetries of
muon-pair production compared with the model indepen-
dent fit results.



ENCAPSULATING THE SIMULATION )

docker
https://github.com/lukasheinrich/weinberg-test

EE README.md

Run HEP workflows from the web.

by Kyle Cranmer and Lukas Heinrich

An example notebook on how to generate simulated high energy physics collision events using the generator package
MadGraph. Simulated datasets obtained from this notebook can then be used to train and evaluate the performance of
generative models for physics.

Usage:

This repository has been equipped with a Dockerfile to encapsulate its software environment. It can be used with the mybinder
service to launch an ephemeral jupyter notebook server to run the notebook.

Click on the below badge and open the notebook adage. ipynb .

1 1 1
= _B ,B/u/ _ _(;u (;/u/
_1 _1 R _l uv T a

kinetic energies and self-interactions of the gauge hosons

— 1%
cSA\[ - W/u/ - WH —

.1 1 .1
+ Ly"(i0 — 597 - W, — 5g’)'B,.)L + Ry"(i8), — 5g’)'B,,)R

other electroweak parameters. This can be shown with Eq. (2.96), giving

kinetic energies and electroweak interactions of fermions

1, 1 I 2 i : o — a2 < (o
+ 510, — 597 W, = 59V B o[ - V(9) AL (s) ~ AL (m2)+ (s —m7z) 3ma(s) 2QcQgacYas (8.30)
= = FB\®) = Appg\l : : : : : -
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ENCAPSULATING THE SIMULATION

https://github.com/lukasheinrich/weinberg-test

README.md

Run HEP workflows from the web.

by Kyle Cranmer and Lukas Heinrich

An example notebook on how to generate simulated high energy physics collision events using the generator package
MadGraph. Simulated datasets obtained from this notebook can then be used to train and evaluate the performance of

generative models for physics.

Usage:

This repository has been equipped with a Dockerfile to encapsulate its software environment. It can be used with the mybinder

service to launch an ephemeral jupyter notebook server to run the notebook.

Click on the below badge and open the notebook adage. ipynb .

launch 'binder
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o - 2G,G
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~
Kinetic energies and self-interactions of the gauge hosons
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Kinetic energies and electroweak interactions of fermions
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docker

ZJupyter adage vast checkooint: an hour ago (autosaved
File Edit View Insert Cel Keme Widgets Help

B+ 3 @B 4+ v N B C Code ¢ @  Cellfoolbar

......... .

for i,e in enumerate(jsonlines.Reader(open(inputfile))):
els = [p for p in e[ 'particles’'] if p['id'] == 11)
mus = [p for p in e[ 'particles’'] if p['id’) == 13)
assert len(mus) == 1
assert len(els) == 1
mu = mus(0)
el = els([0]
el px, el _py, el _pz = [el[x] for x in ['px','py’, 'pz’
mu_px, mu_py, mu_pz = [mu[x] for X in ['px','py’,’'pz’
costheta = mu_pz/el_pz
costhetas.append(costheta)

return costhetas

In [9]: labels = []
plt.figure(figsize=(8, 5))
for index,energy in enumerate(energies):
_r_r_ = plt.hist(analysis( 'workdir {}'.format(index)), bins = 30,
alpha = 0.5, color = plt.get_cmap('viridis')(float(index)/len(energies)),
histtype='stepfilled’)
labels.append(r'$SE_\mathrm{{beam}}={0:.2£}\,\mathrm{{GeV}}$'.format(energy))
plt.legend(labels, loc = 'upper center', frameon = False)
plt.xlabel(r'$\cos\thetas')
plt.ylabel( 'Events’)

plt.show()
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