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O U T L I N E

•Opening remarks on physics, stats & modeling 

•Gaussian Processes 

•Likelihood-free inference & implicit models 

•Adversarial Training & Systematics 

•Incorporating physics knowledge  

•From Reproducibility to Reusability 

•Black Box Optimization
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B U I L D I N G  A  M O D E L  O F  T H E  D ATA

•Before one can discuss statistical tests, one must have a “model” for the 
data.   

• by “model”, I mean the full structure of P(data | parameters) 

• holding parameters fixed gives a PDF for data 

• provides ability to generate pseudo-data (via Monte Carlo) 

• holding data fixed gives a likelihood function for parameters 

• note, likelihood function is not as general as the full model because it doesn’t allow you to 
generate pseudo-data 

•Both Bayesian and Frequentist methods start with the model 

• it’s the objective part that everyone can agree on 

• it’s the place where our physics knowledge, understanding, and intuition 
comes in 

• building a better model is the best way to improve your statistical 
procedure
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T H E  S C I E N T I F I C  N A R R AT I V E

•The model can be seen as a quantitative summary of the analysis 

• If you were asked to justify your modeling, you would tell a story 
about why you know what you know 

• based on previous results and studies performed along the 
way 

• the quality of the result is largely tied to how convincing this story 
is and how tightly it is connected to model 

•Common “narrative styles” 

• The “Monte Carlo Simulation” narrative 

• The “Data Driven” narrative 

• The “Effective Modeling” narrative 

•Real-life analyses often use a mixture of these
4



D i s c o v e r y !

•Ef
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Effective Model Narrative 
polynomial fit  

to smooth background

Simulation Narrative 
template histograms  

from simulation
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Gaussian Processes 
(Effective Model / Surrogates)

[a few slides by Dan Foreman-Mackey from DS@LHC ]
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signal variability noise data
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astrophysics and spacecraft

The anatomy of a transit observation
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[Slides by Dan Foreman-Mackey]

https://indico.cern.ch/event/395374/timetable/#41-scalable-gaussian-processes


A N  E X O P L A N E T  E X A M P L E

8https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets
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HUGE
the data are drawn from one

Gaussian
* the dimension is the number of data points.

*



G A U S S I A N  P R O C E S S E S
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GAUSSIAN PROCESSES

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets

The choice of kernel

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

k↵(xi, xj) = exp

✓
� [xi � xj ]

2

2 `

2

◆



11

GAUSSIAN PROCESSES

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets

The choice of kernel

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

k↵(xi, xj) = exp

✓
� [xi � xj ]

2

2 `

2

◆



11

GAUSSIAN PROCESSES

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets

The choice of kernel

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

k↵(xi, xj) = exp

✓
� [xi � xj ]

2

2 `

2

◆



11

GAUSSIAN PROCESSES

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets

The choice of kernel

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

�2

�1

0

1

2

3
exponential squared l = 0.5

l = 1

l = 2

0 2 4 6 8 10
t

�2

�1

0

1

2

3
quasi-periodic l = 2, P = 3

l = 3, P = 3

l = 3, P = 1

k↵(xi, xj) = exp

✓
� [xi � xj ]

2

2 `

2

◆



S E A R C H I N G  O V E R  S PA C E  O F  M O D E L S

•Vocabulary of kernels + grammar for 
composition 

• physics goes into the construction of 
a “Kernel” that describes covariance 
of data

12

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.
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Figure 3. Posterior mean and variance for di↵erent depths
of kernel search. The dashed line marks the extent of the
dataset. In the first column, the function is only modeled
as a locally smooth function, and the extrapolation is poor.
Next, a periodic component is added, and the extrapolation
improves. At depth 3, the kernel can capture most of the
relevant structure, and is able to extrapolate reasonably.
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Figure 4. First row: The posterior on the Mauna Loa
dataset, after a search of depth 10. Subsequent rows show
the automatic decomposition of the time series. The de-
compositions shows long-term, yearly periodic, medium-
term anomaly components, and residuals, respectively. In
the third row, the scale has been changed in order to clearly
show the yearly periodic structure.
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G A U S S I A N  P R O C E S S E S  AT  L H C

•Instead of fitting the dijet spectrum with an ad hoc 3-5 
parameter function, use GP with kernel motivated from physics

13

5

FIG. 6: The ATLAS 13 TeV dijet dataset with (top)
Gaussian Process fit and (bottom) 3 parameter fit

function fit

PERFORMANCE

Background only fit: no signal

• Show fits to BG only (ATLAS + toy), compare GP
to 3-param function

• Show tests as function of luminosity

A requirement of the background estimation procedure
is to produce a smooth background given any dataset.
Our first test of this is to fit each of the 10000 toys cre-
ated with the smoothed data with our Gaussian Process
and 3 parameter fit function, with the results shown in
figure 7. The Gaussian Process and 3 parameter fit func-
tion appear to perform similarly.
For each fit to a toy, we calculate the �2 goodness of

fit. The distribution of �2 for both Gaussian Process and
parametric fits is shown in Figure 8.
A second test that our Gaussian Process must pass is

its ability to fit at higher luminosity. For this, we scale
the smoothed data to luminosities of 5, 10, 15, 20, 25,
30, 35, 40, 45, and 50 fb�1, and then generate 1000 toys
at each luminosity. For each fit, we calculate the �2. We
then show the median and standard deviation of the �2

across all toys as a function of luminosity in Figure 9.

Other plots

• compare refitting all hyperparameters to not refit-
ting any (only scaling the mean function up with
luminosity) for the luminosity test. Current don’t
refit any

• distribution of �2 for each luminosity

• using GP covariance matrix in calculation of �2

rather then just sqrt(obs).

Background only fit: with signal

• show that we can extract background when there
is a signal

• show GP signal can accurately pick out signal even
on odd signal shapes

Our background estimation procedure must not only be
able to produce a smooth background on datasets with-
out signal, but must be able to handle extracting back-
ground even when a signal is present. Previously, the
fit functions used were not flexible enough to include a
large signal. If a signal was present in data and there-
fore produced a poor background estimation, an itera-
tive procedure to remove the signal and extrapolate the
fit in the area of the removed signal was performed. To
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FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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FIG. 5: SWiFt Covariance Structure

• comparing covariance at low mass, mid mass, and
high mass as a function of mjj i.e. 1st row, middle
row, and last row of covariance matrix

• fit function parameter corner plots. 1D distribu-
tions of fit function parameters from posterior sam-
ples. 2D distributions (i.e. p0 vs p1, p0 vs p2, p1 vs
p2) of fit function parameters from posterior sam-
ples.

• fit function bin counts corner plots. 1D distribu-
tions of bin values from posterior samples. 2D dis-
tributions (i.e. bin1 vs bin 2, bin 1 vs bin 20...) of
bin values from posterior samples

• covariance plots for GP and fit function when fit to
smooth 5 param fit function with Poisson errors

• covariance plots and fit for GP using two di↵erent
kernels: fit function kernel (kernel is fit function at
x times fit function at x’) and exponential curve fit
from paper [cite] where they have no mean and try
to use kernel to cover large data range.

Mean function

• what are we using as our mean function and why

We use a 3-parameter dijet fit functions as our mean
function, which is given in Eq. 3, where s is the center
of mass energy. . This is chosen as it is the lowest order
fit function used in the 13 TeV dijet analyses. Because
Gaussian Processes are so flexible, the choice of mean
function does not need to be precise, as in we do not
need to go through similar procedures to the dijet anal-
yses in order to choose the best fit function. Rather, the
mean should be roughly corresponding to the underlying
structure of the distribution, while the covariance func-
tion will take care of modeling the fluctuations.

µ(x) = p0 ⇥ (1� xp
s
)p1 ⇥ (

xp
s
)p2 (3)

PROCEDURE

• more mathematical description of GP

• what packages are we using

• what is defined as the background estimate for a
Gaussian Process

In this paper, we use the Python library called george
for our Gaussian Process regression [cite george]. George
must be given a kernel and some initial hyperparameters,
as well as the independent coordinates. In our setup,
there are several hyperparameters to be fitted, which in-
clude the five kernel parameters (a, b, c, d, and some
overall amplitude we call A,) and our three mean pa-
rameters (p0, p1, p2), as seen in Eq. 2 and Eq. 3. To
get these hyperparameters, we pass the negative log like-
lihood of the fit into Minuit minimizer[cite]. The log
likelihood is Gaussian in nature and given by �ln(L) =
1
2 (ln(|⌃(x, x)|) + (y� µ(x))T⌃(x, x)�1(y� µ(x)) + const
where ⌃, µ are the kernel and mean function evaluated
at the independent coordinates, and y is the data. Our
final background estimation is the mean of the condi-
tional distribution of the Gaussian Process, given by
m = µ(x0) + ⌃(x, x0)[⌃(x, x) + �2I]�1(y � µ(x)) where
⌃, µ are once again the kernel and mean function, x is the
independent coordinates, y is data, and x’ is the indepen-
dent coordinates the conditional distribution should be
evaluated at.

DATASETS

• 13 TeV ATLAS dataset, see Fig ??.

• toy mc. Take 5-param function, fit to 13 TeV AT-
LAS dataset (cite) see Fig ??, then generate 1000
data samples.

The base dataset used to fit is a 13 TeV ATLAS dataset
of 3.6fb�1 [cite]. To test the e↵ectiveness of our Gaussian
Process, we perform a set of tests that we compare our
Gaussian Process to the standard fit function approach
using a 3 parameter fit function (Eq. 3). As a first check,
we compare the fits to the ATLAS dataset, with the re-
sults shown in figure 6.
We also compare Gaussian Process and parametric fits

on toy datasets. These toys are generated from smoothed
data.

+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson stats 
+ Mass Resolution

with Meghan Frate

=

+ 
…

+ 
…
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Symbol Description Value

me Electron mass 511 keV

mμ Muon mass 105.7 MeV

mτ Tau mass 1.78 GeV

mu Up quark mass 1.9 MeV

md Down quark mass 4.4 MeV

ms Strange quark mass 87 MeV

mc Charm quark mass 1.32 GeV

mb Bottom quark mass 4.24 GeV

mt Top quark mass 172.7 GeV

θ12 CKM 12-mixing angle 13.1°

θ23 CKM 23-mixing angle 2.4°

θ13 CKM 13-mixing angle 0.2°

δ CKM CP-violating Phase 0.995

g1 U(1) gauge coupling 0.357

g2 SU(2) gauge coupling 0.652

g3 SU(3) gauge coupling 1.221

θQCD QCD vacuum angle ~0

v Higgs vacuum expectation value 246 GeV

mH Higgs mass 125 GeV 

γ g

ZW
H

e
μ

τ

u

c
t d

s

b

νe
νμ

ντ

https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
https://en.wikipedia.org/wiki/CP_violation
https://en.wikipedia.org/wiki/Vacuum_angle
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Symbol Description Value

ΩBH2 Physical Baryon Density Parameter 0.02230 ± 0.00014

ΩCH2 Physical Dark Matter Density Parameter 0.1188 ± 0.0010

T0 Age Of The Universe 13.799 ± 0.021 × 109 Years

NS Scalar Spectral Index 0.9667 ± 0.0040

Δ2
R

Curvature Fluctuation Amplitude 2.441 ± 0.09 × 10−9

Τ Reionization Optical Depth 0.066 ± 0.012

The Cosmic Microwave Background 
 A Gaussian Process in the Sky

https://en.wikipedia.org/wiki/Age_of_the_universe
https://en.wikipedia.org/wiki/Reionization
https://en.wikipedia.org/wiki/Optical_depth
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PRED ICT ION

INFERENCE

x 
observed data 

covariates 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p(x|θ, ν)

ν 
nuisance parameters

(z: latent variables)
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)
hierarchical: 2 → O(10) → O(100) particles

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
e+

e-

mu-

mu+

Finally, we run particle identification and 
feature extraction algorithms on the simulated 
data as if they were from real collisions.

4)

>100 million sensors

~10-30 features describe interesting part

hierarchical: 2 → O(10) → O(100) particles
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•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 
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D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 

•This motivates a new class of algorithms for what is called 
likelihood-free inference, which only require ability to 
generate samples from the simulation in the “forward mode” 

20



1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable or feature 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)

21
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This doesn’t scale if x is high dimensional!
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‘Likelihood-Free’ Inference

Rejection Algorithm

Draw ✓ from prior ⇡(·)
Accept ✓ with probability ⇡(D | ✓)

Accepted ✓ are independent draws from the posterior distribution,
⇡(✓ | D).
If the likelihood, ⇡(D|✓), is unknown:

‘Mechanical’ Rejection Algorithm

Draw ✓ from ⇡(·)
Simulate X ⇠ f (✓) from the computer model

Accept ✓ if D = X , i.e., if computer output equals observation

The acceptance rate is
R

P(D|✓)⇡(✓)d✓ = P(D).

*From Richard Wilkinson’s talk at Data science @LHC 
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any ✓. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw ✓ from ⇡(✓)

Simulate X ⇠ f (✓)

Accept ✓ if ⇢(D,X )  ✏

✏ reflects the tension between computability and accuracy.

As ✏ ! 1, we get observations from the prior, ⇡(✓).

If ✏ = 0, we generate observations from ⇡(✓ | D).

For reasons that will become clear later, we call this uniform-ABC.

*From Richard Wilkinson’s talk at Data science @LHC 
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G o a l  i s  t o  
e s t i m a t e

l i k e l i h o o d -
f r e e

θ  i n f e r e n c e
G e n e r a t o r  

p ( x |θ )

A B C p (θ  |  x 0 ) y e s a p p r o x i m a t e —

B B V I p (θ , z  |  x ) n o — —

A E V B p (φ , z  |  x ) y e s
a p p r o x i m a t e  
o n  φ  n o t  θ s u r r o g a t e

c - G A N p ( x |θ ) y e s — s u r r o g a t e

N V P / I A F p ( x ) y e s — s u r r o g a t e

C A R L p ( x  |  θ ) / p ( x  |  θ 1 ) y e s e x a c t
s i m u l a t i o n @  θ 1  
x  i m p o r t a n c e  
s a m p l i n g  t o  θ

“ c - N V P ” p ( x |θ )  
v i a  b i j e c t i o n s  x ( z |θ )

y e s e x a c t s u r r o g a t e

(Goodfellow 2016)

Taxonomy of Generative Models

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets 
 -NADE 
 -MADE 
 -PixelRNN 
-Change of variables 
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN

e x a c t  =  a s y m p t o t i c a l l y  c o n s i s t e n t  i n  i n f i n i t e  c a p a c i t y  l i m i t
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http://diana-hep.org/carl/



Hierarchical Graphical Models



“ L A  M I A  PA R A B O L A ”

28Figure by Federico Carminati, independent parallel inventions by Vincenzo Innocente & K.C.
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Celeste

is effectively static during human time scales. In an imag-
ing exposure, the expected count of photons entering the
telescope’s lens from a particular object is proportional to
its brightness. When multiple objects contribute photons to
the same pixel, their rates combine additively.

Second, many sources of prior information about celestial
bodies are available, but none is definitive. Stars tend to
be brighter than galaxies, but many stars are dim and many
galaxies are bright. Stars tend to be smaller than galax-
ies, but many galaxies appear point-like as well. Stars and
galaxies differ greatly in how their radiation is distributed
over the visible spectrum: stars are well approximated by
an “ideal blackbody law” depending only on their tempera-
ture, while galaxies are not. On the other hand, stars are not
actually ideal blackbodies, and galaxies do emit energy in
the same wavelengths as stars. Posterior inference in a gen-
erative model provides a principled way to integrate these
various sources of prior information.

Third, even the most powerful telescopes receive just a
handful of photons per exposure from many celestial ob-
jects. Hence, many objects cannot be precisely located,
classified, or otherwise characterized from the data avail-
able. Quantifying the uncertainty of point estimates is
essential—it is often as important as the accuracy of the
point estimates themselves. Uncertainty quantification is a
natural strength of the generative modeling framework.

Some astronomical software uses probabilities in a heuris-
tic fashion (Bertin & Arnouts, 1996), and a generative
model has been developed for measuring galaxy shapes
(Miller et al., 2013)—a subproblem of ours. But, to our
knowledge, fully generative models for inferring celestial
bodies’ locations and characteristics have not yet been ex-
amined.1 Difficulty scaling the inference for expressive
generative models may have hampered their development,
as astronomical sky surveys produce very large amounts
of data. For example, the Dark Energy Survey’s 570-
megapixel digital camera, mounted on a four-meter tele-
scope in the Andes, captures 300 gigabytes of sky im-
ages every night (Dark Energy Survey, 2015). Once com-
pleted, the Large Synoptic Survey Telescope will house a
3200-megapixel camera producing eight terabytes of im-
ages nightly (Large Synoptic Survey Telescope Consor-
tium, 2014).

The rest of the paper describes the Celeste model (Sec-
tion 2) and its accompanying variational inference proce-
dure (Section 3). Section 4 details our empirical studies on
synthetic data as well as a sizable collection of astronomi-
cal images.

1However, see Hogg (2012) for a workshop presentation
proposing such a model.

Figure 2. The Celeste graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent ran-
dom variables. Black dots represent constants. Constants with
“bar” decorators, e.g. N✏nb , are set a priori. Constants denoted by
uppercase Greek characters are also fixed; they denote parame-
ters of prior distributions. The remaining constants and all latent
random variables are inferred. Edges signify conditional depen-
dency. Rectangles (“plates”) represent independent replication.

2. The model
The Celeste model is represented graphically in Figure 2.
In this section we describe how Celeste relates celestial
bodies’ latent characteristics to the observed pixel inten-
sities in each image.

2.1. Celestial bodies

Celeste is a hierarchical model, with celestial objects atop
pixels. For each object s D 1; : : : ; S , the unknown 2-vector
�s encodes its position in the sky as seen from earth. In Ce-
leste, every celestial body is either a star or a galaxy. (In the
present work, we ignore other types of objects, which are
comparatively rare.) The latent Bernoulli random variable
as encodes object type: as D 1 for a galaxy, as D 0 for a
star. We set the prior distribution

as ⇠ Bernoulli.˚/: (1)

Regler, et al 33rd ICMLR, 2016
Celeste: Variational inference for a generative model of

astronomical images

Jeffrey Regier, University of California, Berkeley JEFF@STAT.BERKELEY.EDU
Andrew Miller, Harvard University ACM@SEAS.HARVARD.EDU
Jon McAuliffe, University of California, Berkeley JON@STAT.BERKELEY.EDU
Ryan Adams, Harvard University RPA@SEAS.HARVARD.EDU
Matt Hoffman, Adobe Research MDHOFFMA@CS.PRINCETON.EDU
Dustin Lang, Carnegie Mellon University DSTN@CMU.EDU
David Schlegel, Lawrence Berkeley National Laboratory DJSCHLEGEL@LBL.GOV
Prabhat, Lawrence Berkeley National Laboratory PRABHAT@LBL.GOV

Abstract
We present a new, fully generative model of op-
tical telescope image sets, along with a varia-
tional procedure for inference. Each pixel inten-
sity is treated as a Poisson random variable, with
a rate parameter dependent on latent properties
of stars and galaxies. Key latent properties are
themselves random, with scientific prior distribu-
tions constructed from large ancillary data sets.
We check our approach on synthetic images. We
also run it on images from a major sky survey,
where it exceeds the performance of the current
state-of-the-art method for locating celestial bod-
ies and measuring their colors.

1. Introduction
This paper presents Celeste, a new, fully generative model
of astronomical image sets—the first such model to be em-
pirically investigated, to our knowledge. The work we
report is an encouraging example of principled statistical
inference applied successfully to a science domain under-
served by the machine learning community. It is unfortu-
nate that astronomy and cosmology receive comparatively
little of our attention: the scientific questions are funda-
mental, there are petabytes of data available, and we as a
data-analysis community have a lot to offer the domain sci-
entists. One goal in reporting this work is to raise the profile
of these problems for the machine-learning audience and
show that much interesting research remains to be done.

Turn now to the science. Stars and galaxies radiate photons.
An astronomical image records photons—each originating

Proceedings of the 32

nd
International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Figure 1. An image from the Sloan Digital Sky Survey (SDSS,
2015) of a galaxy from the constellation Serpens, 100 million
light years from Earth, along with several other galaxies and many
stars from our own galaxy.

from a particular celestial body or from background at-
mospheric noise—that pass through a telescope’s lens dur-
ing an exposure. Multiple celestial bodies may contribute
photons to a single image (e.g. Figure 1), and even to a
single pixel of an image. Locating and characterizing the
imaged celestial bodies is an inference problem central to
astronomy. To date, the algorithms proposed for this in-
ference problem have been primarily heuristic, based on
finding bright regions in the images (Lupton et al., 2001;
Stoughton et al., 2002).

Generative models are well-suited to this problem—for
three reasons. First, to a good approximation, photon
counts from celestial objects are independent Poisson pro-
cesses: each star or galaxy has an intrinsic brightness that
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qφ(z|x) = N(μ,σ2) 
[μ, σ2] = f(z|x)(x,φ) = multilayer neural net 

Objective: lower bound of log p(x). 
Jointly optimized w.r.t. φ and θ 
This is approx. maximum likelihood 
Simple SGD: 

Sampling small minibatches of data 
Sampling from approx. posterior 

This also minimizes an expected KL 
divergence 
DKL(qφ(z|x)||p(z|x))  
-> gives us cheap approx. inference for new 
datapoints

x

z

N

θ

Auto-Encoding Variational Bayes
[Kingma and Welling, 2013/2014] 
[Rezende et al, 2014]

φ Conv. net as encoder/decoder, 
trained on faces

(trained by Alec Radford 2015)

[Slides from D. Kingma NIPS 2015]

Variational Auto-Encoders
and Extensions

Diederik (Durk) 
Kingma 

Max 
Welling 

Kingma and Welling, Auto-encoding Variational Bayes, ICLR 2014 
Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep latent Gaussian 

models, ICML 2014 

http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf
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Catch me if you can

Leo is G Tom is D

5 / 13

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).

6 / 13

Generative adversarial nets (Goodfellow et al., 2014)

Do not assume any form, but use a neural network to produce

similar samples.

•
Two-player game:

a discriminator D,

a generator G ;

•
D is a classifier X 7! {0, 1} that tries to distinguish between

a sample from the data distribution (D(x) = 1, for x ⇠ p

data

),

and a sample from the model distribution (D(G (z)) = 0, for

z ⇠ p

noise

);

•
G is a generator Z 7! X trained to produce samples G (z) (for

z ⇠ p

noise

) that are di�cult for D to distinguish from data.

4 / 13

Goodfellow, et al arXiv:1406.2661 
slide Gilles Louppe
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37http://torch.ch/blog/2015/11/13/gan.html
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CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganinia,b, Luke de Oliveiraa, and Benjamin Nachmana

aLawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
bDepartment of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch

Abstract: Simulation is a key component of physics analysis in particle physics and nuclear physics.
The most computationally expensive simulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are not precise enough to serve the entire physics program.
Therefore, we introduce CaloGAN, a new fast simulation based on generative adversarial neural
networks (GANs). We apply the CaloGAN to model electromagnetic showers in a longitudinally
segmented calorimeter. This represents a significant stepping stone toward a full neural network-based
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CaloGAN achieves speedup factors comparable to or better than
existing fast simulation techniques on CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 10

5⇥))
and has the capability of faithfully reproducing many aspects of key shower shape variables for a variety
of particle types.

ar
X

iv
:1

70
5.

02
35

5v
1 

 [h
ep

-e
x]

  5
 M

ay
 2

01
7

Creating Virtual Universes Using Generative Adversarial Networks

Mustafa Mustafa
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Abstract

Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmol-
ogy. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally
expensive. The application of deep learning techniques to generative modeling is renewing interest in using high
dimensional density estimators as computationally inexpensive emulators of fully-fledged simulations. These
generative models have the potential to make a dramatic shift in the field of scientific simulations, but for that
shift to happen we need to study the performance of such generators in the precision regime needed for science
applications. To this end, in this letter we apply Generative Adversarial Networks to the problem of generating
cosmological weak lensing convergence maps. We show that our generator network produces maps that are
described by, with high statistical confidence, the same summary statistics as the fully simulated maps.

The scientific success of the next generation of sky
surveys (e.g. [1–5]) to test the current “standard model”
of cosmology (⇤CDM), hinges critically on the success
of underlying simulations. Answering questions in cos-
mology about the nature of cold dark matter, dark
energy and the inflation of the early universe, requires
relating observations of a large number of astrophysical
objects which trace the underlying matter density field,
to simulations of “virtual universes” with different cos-
mological parameters. Currently the creation of each
virtual universe requires an extremely computationally
expensive simulation on High Performance Computing
resources. In order to make this inverse problem prac-
tically solvable, constructing a computationally cheap
surrogate model or an emulator [6, 7] is imperative.

However, traditional approaches to emulators re-
quire the use of a summary-statistic which is to be em-
ulated. An approach that does not require such math-
ematical templates of the simulation outcome would
be of considerable value in the field. The ability to
emulate these simulations with high fidelity, in a frac-
tion of the computational time, would boost our ability
to understand the fundamental nature of the universe.
While in this letter we focus our attention on cosmol-
ogy, and in particular weak lensing convergence maps,
we believe that this approach is relevant to many areas
of science and engineering.

Recent developments in deep generative modeling
techniques open the potential to meet this need. The
density estimators in these models are built out of neu-
ral networks which can serve as universal approxima-
tors [8], thus having the ability to learn the underlying
distributions of data and emulate the observable with-
out being biased by the choice of summary-statistics,

⇤Corresponding author: mmustafa@lbl.gov

as in the traditional approach to emulators.
In this letter, we study the ability of a recent vari-

ant of generative models - Generative Adversarial Net-
works (GANs) [9] to generate weak lensing convergence
maps. The training and validation maps are produced
using N-body simulations of ⇤CDM cosmology. We
show that maps generated by the neural network ex-
hibit, with high statistical confidence, the same power
(Fourier) spectrum of the fully-fledged simulator maps,
as well as higher order non-Gaussian features, thus
demonstrating that such scientific data is amenable to
a GAN treatment for generation. The very high level
of agreement we achieve offers promise for building em-
ulators out of deep neural networks. We first present
our results and analysis then outline the future inves-
tigations which we think are critical to build such em-
ulators in the Discussion section.

Results

Gravitational lensing has potential to be one of the
most sensitive probes of the nature of dark energy [10],
and affects the shape and apparent brightness of every
galaxy we observe. Convergence (⌫) is the quantity
that defines the brightness of an observed object as it
is affected by the matter along the line of sight between
that galaxy and the observer. It can be interpreted as
a measure of the density of the universe observed from
a particular direction. A full N-body simulation cre-
ates convergence maps corresponding to many random
realizations of the same cosmological model. We set
out to train a GAN model on 256 ⇥ 256 pixels conver-
gence maps taken from these simulations. A descrip-
tion of the simulations and data preparation methods
is in the Methods section. Before we describe our re-
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Figure 1: Weak lensing convergence maps for a ⇤CDM cosmological model with �

8

= 0.798, w = �1.0,
⌦

m

= 0.26 and ⌦

⇤

= 0.74. Randomly selected maps from validation dataset (top) and GAN generated
examples (bottom).

sults we first outline the objective of generative models
and the GANs framework.

The central problem of generative models is the ques-

tion: given a distribution of data P
data

can one devise

a generator G such that the distribution of model gen-

erated data P
model

= P
data

? Our information about
P
data

comes from the training dataset, typically an in-
dependent and identically distributed random sample
x

1

, x

2

, . . . , x

n

which is assumed to have the same dis-
tribution as P

data

. Achieving a high fidelity genera-
tion scheme amounts to the construction of a density
estimator of the training data. In the GANs frame-
work a generator function G is optimized to generate
samples that are indistinguishable from training data
as judged by a discriminator function D. D is opti-
mized to discriminate between training data and gen-
erated data. In the neural network formulation of this
framework the generator network G

✓

parametrized by
network parameters ✓ and discriminator network D

w

parametrized by w are simultaneously optimized using
gradient-descent.

Of interest to us here is the generator G
✓

. Its param-
eters are optimized to map a vector z sampled from a
prior to the support of P

model

. The only requirement
on the generator is that it is differentiable with respect
to its parameters and input (except at possibly finitely
many points). For the 256 ⇥ 256 convergence maps we
study, we choose a normal prior, so:

z ⇠ [N
0

(0, 1), . . . ,N
63

(0, 1)]

G

✓

: z ! x ✏ R256⇥256

.

The dimension of the vector z needs to be com-
mensurate with the support of the training conver-
gence maps P

data

in R256⇥256. Because the underly-
ing physics of the convergence maps is translation and
rotation invariant [11], we chose to construct the gener-
ator and discriminator networks mainly from convolu-
tional layers. To allow the network to learn the proper
correlations on the components of the input z early on,
the first layer of the generator network needs to be a
fully-connected layer. A well studied architecture that
meets these criteria is the Deep Convolutional Gener-
ative Adversarial Networks (DCGAN) [12]. DCGAN
is a set of empirically chosen architectural guidelines
and hyper-parameters which have been shown to be
robust to excel at a variety of tasks. We experimented
with DCGAN architectural parameters and we found
that most of the hyper-parameters optimized for natu-
ral images by the original authors perform well on the
convergence maps, for example, changing the learning
rates or the kernel sizes worsens the performance. We
used DCGAN with slight modifications to meet our
problem dimensions as described in the Methods sec-
tion.

2

Figure 8: Average ⇡+

Geant shower (top), and average ⇡+

CaloGAN shower (bottom), with
progressive calorimeter depth (left to right).

Figure 9: Five randomly selected e+ showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 10: Five randomly selected � showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 11: Five randomly selected ⇡+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.
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Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our cos-
mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
of what dark energy actually is, which provides one of the
main motivations behind the next generation of cosmological
surveys such as LSST (LSST Science Collaboration et al.,
2009), Euclid (Laureijs et al., 2011) and WFIRST (Green
et al., 2012). These billion dollar projects are specifically
designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing
effect –i.e., the minute deflection of the light from distant
objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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1School of Computer Science, Carnegie Mellon University
2McWilliams Center for Cosmology, Carnegie Mellon University

Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our cos-
mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
of what dark energy actually is, which provides one of the
main motivations behind the next generation of cosmological
surveys such as LSST (LSST Science Collaboration et al.,
2009), Euclid (Laureijs et al., 2011) and WFIRST (Green
et al., 2012). These billion dollar projects are specifically
designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing
effect –i.e., the minute deflection of the light from distant
objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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Fig. 2: Samples from the GALAXY-ZOO dataset and generated samples using conditional generative adversarial network of Section III. Each
synthetic image is a 128⇥ 128 colored image (here inverted) produced by conditioning on the same set of features y 2 [0, 1]37 as its real
pair. These instances are selected from the test-set and were unavailable to the model during the training.

conditioned on statistics of interest such as the brightness or
size of the galaxy. This will allow us to synthesize calibration
datasets for specific galaxy populations, with objects exhibit-
ing realistic morphologies.

In the following, Section I gives a brief background on the
image generation for calibration and its significance for mod-
ern cosmology. We then review the current approaches to deep
conditional generative models and introduce new techniques
for our problem setting in Sections II and III. In Section IV we
assess the quality of the generated images by comparing the
conditional distributions of shape and morphology parameters
between simulated and real galaxies, and find good agreement.

I. WEAK GRAVITATIONAL LENSING

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted �, whose amplitude and orientation depend on
the matter distribution between the observer and these distant
galaxies. This shear affects in particular the apparent ellipticity
of galaxies, denoted e. Measuring this weak lensing effect is
made possible under the assumption that background galaxies
are randomly oriented, so that the ensemble average of the
shapes would average to zero in the absence of lensing. Their
apparent ellipticity e can then be used as a noisy but unbiased
estimator of the shear field �: E[e] = �. The cosmological
analysis then involves computing auto- and cross-correlations
of the measured ellipticities for galaxies at different distances.
These correlation functions are compared to theoretical pre-
dictions in order to constrain cosmological models and shed
light on the nature of dark energy.

However, measuring galaxy ellipticities such that their
ensemble average (used for the cosmological analysis) is
unbiased is an extremely challenging task. Fig. 1 illustrates
the main steps involved in the acquisition of the science
images. The weakly sheared galaxy images undergo additional
distortions (essentially blurring) as they go through the at-
mosphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this figure
illustrates, the cosmological shear is clearly a subdominant
effect in the final image and needs to be disentangled from
subsequent blurring by the atmosphere and telescope options.
This blurring, or Point Spread Function (PSF), can be directly

measured by using stars as point sources, as shown at the top
of Fig. 1.

Once the image is acquired, shape measurement algorithms
are used to estimate the ellipticity of the galaxy while correct-
ing for the PSF. However, despite the best efforts of the weak
lensing community for nearly two decades, all current state-
of-the-art shape measurement algorithms are still susceptible
to biases in the inferred shears. These measurement biases are
commonly modeled in terms of additive and multiplicative bias
parameters c and m defined as:

E[e] = (1 +m) � + c (1)

where � is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors such
as the PSF size/shape, the level of noise in the images or,
more generally, intrinsic properties of the galaxy population
(like their size and ellipticity distributions, etc. ). Calibration of
these biases can be achieved using image simulations, closely
mimicking real observations for a given survey but using
galaxy images distorted with a known shear, thus allowing
the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
(Rowe et al., 2015), use a forward modeling of the observa-
tions, reproducing all the steps of the image acquisition pro-
cess in Fig. 1, and therefore require as a starting point galaxy
images with high resolution and S/N. The main difficulty in
these image simulations is therefore the need for a calibration
sample of high quality galaxy images representative of the
galaxy population of the survey being simulated. Our aim in
this work is to train a deep generative model which can be
used to cheaply synthesize such data sets for specific galaxy
populations, by conditioning the samples on measurable quan-
tities.

A. Data set

As our main dataset, we use the COSMOS survey to build
a training and validation set of galaxy images and extract
from the corresponding catalog a condition vector y with
three features: half-light radius (measure of size), magnitude
(measure of brightness) and redshift (cosmological measure of
distance). To facilitate the training, we align all galaxies along
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• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:
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Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
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linear activations, output nodes for the standard devi-
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while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓
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) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
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observe that the global objective L
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sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function
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[log(D(x))] + E
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[log(1� D(G (z)))];

•
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For fixed G , find D which maximizes V (D,G ),
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⇤,G ⇤
) = max

D
min

G
V (D,G ).
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from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
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)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓
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) are inde-
pendent variables. In other words, the optimal classifier
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) is also a pivotal quantity.
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sifier exists. Therefore, the adversarial term L
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can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
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where � � 0 is a hyper-parameter controlling the trade-
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setting � close to 0 will rather constraint f to be optimal.
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in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.
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of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.
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As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
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) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓
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respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓
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) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓
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) as a mixture of five gaussians. The
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L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:

41

2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).
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mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.
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setting � close to 0 will rather constraint f to be optimal.
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there may exist distinct but equally good solutions ✓
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minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓
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) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.
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A. Toy example
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classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that
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case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
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) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓
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to the nuisance parameter Z.
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train a neural network classifier f minimizing L
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without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓
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) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an
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network architecture of r comprises 2 dense hidden lay-
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output layer of 15 nodes corresponding to the means,
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gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓
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the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
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f

) are inde-
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can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.
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setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier
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A N  E X A M P L E

•Technique allows us to tune λ, the tradeoff between 
classification power and robustness to systematic uncertainty

42
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hAn example: 

background: 1000 QCD jets 
signal: 100 boosted W’s 

Train W vs. QCD classifier 

Simple cut-and-count 
analysis with background 
uncertainty. 

standard 
training

optimal tradeoff of classification vs. & robustness

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046



From off-the-shelf algorithms 
to physics-aware algorithms 

Example: Jet Substructure



J E T  S U B S T R U C T U R E

•Many scenarios for physics Beyond the Standard Model 
include highly boosted W, Z, H bosons or top quarks  

•Identifying these rests on subtle substructure inside jets 

• an enormous number of theoretical effort in developing 
observables and techniques to tag jets like this 

44

2

b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both



J E T  I M A G E S

•Last year deep learning algorithms applied to “jet images” 

• based on fast simulation & idealized uniform calorimeter 

• preprocessed to recenter (η, φ) & rotated 
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Average Boosted W Jet Average QCD Jet

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Dawe, et al arXiv:1609.00607

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190


J E T  I M A G E S

•Inspecting the classifier shows parts of image that favor the 
W→ jj interpretation are consistent with physics intuition 

• W-like   QCD-like
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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5.3 Physics in Deep Representations

To get a tangible and more intuitive understanding of what jet structures a DNN learns, we compute
the correlation of the DNN output with each pixel of the jet-images. Specifically, let y be the DNN
output, and consider the intensity of each pixel Iij in transformed (⌘,�) space. We the construct an
image, which we denote the deep correlation jet-image, where each pixel (i, j) is ⇢Iij ,y, the Pearson
Correlation Coe�cient of the pixels intensity with the final DNN output, across images. While this
this image does not give a direct view of the discriminating information learned within the network,
it does provide a guide to how such information may be contained within the network. In Figure 11,
we construct this deep correlation jet-image for both the ConvNet and the MaxOut networks. We
can see that the location and energy of the subleading subjet, found at the bottom of the image, is
highly correlated with the DNN output and important for identifying signal jet-images. In contrast,
the information contained in the leading subjet, seen at (x, y) ⇠ (0, 0) in the image, is not particularly
correlated with the network output owing to the fact that both signal and background jets have
high energy leading subjets. We also see asymmetric regions around both subjets that are correlated
with the DNN output and is indicating the presence of additional radiation expected in the QCD
background jets. Finally, a small negative correlation with the rest of the jet area is seen, indicating
that radiation from the background jets is more likely to be observed in these regions. The exact
function form of these distribution are not known, nor does it seem to describe exactly any known
physics inspired variable.

Figure 11: Per-pixel linear correlation with DNN output for the Convnet (left) and the MaxOut
network (right). Signal and background jets are combined.
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E X P L O I T I N G  S Y M M E T R Y

•Physics is ripe with symmetries, we should incorporate that 
knowledge into our models 

• difficulty: often detector breaks symmetries

47

Symmetry in Deep Learning 

What makes CNNs so effective? 

❖ Weight sharing: exploits translation symmetry  

❖ Depth: exploits equivariance 

Network design principle: 
Equivariance to symmetry transformations 

(Picasso effect: 
 why we do not want to  
 use invariant features) 

Conv vs G-Conv 

Planar Convolution Group Convolution 

Z2-Convolution G-Convolution 

“translate filter and compute inner product” “transform filter and compute inner product” 

Translation Transformation 

[Slides by Max Welling]

http://iop.uva.nl/content/events/lectures/2017/00/iop-colloquium-max-welling-ivi-uva.html


F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!

48
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•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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Analogy: 
word → particle 
parsing → jet algorithm



Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S
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•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 
(arXiv:1702.00748) 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good physics properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt



E V E N T  E M B E D D I N G S

•Jointly optimize jet embedding → event embedding → classifier

50

7

Jet

embeddings

v1 v2 v3 v4

h1(t1)

v(t1)
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Event embedding

... f(e)

Classifier

FIG. 4. [Gilles: write me, move me?]

Appendix A: Gated recursive embedding of jets

The recursive activation proposed in the previous sec-
tion su↵ers from two critical issues. First, it assumes
that left-child, right-child and local node information
hkL , hkR , uk are all equally relevant for computing the
new activation, while only some of this information may
be needed and selected. Second, it forces information to
pass through several levels of non-linearities and does not
allow to propagate unchanged from leaves to root. Ad-
dressing these issues and generalizing from [5–7], we pro-
pose to recursively define a recursive activation equipped

with reset and update gates as follows:

hk =

8
><

>:

uk if k is a leaf

zH � h̃k + zL � hkL+ otherwise

,! zR � hkR + zN � uk

(A1)

uk = � (Wuok + bu) (A2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(A3)

h̃k = �

0

@Wh̃

2

4
rL � hkL

rR � hkR

rN � uk

3

5+ bh̃

1

A (A4)

2

64

zH

zL

zR

zN

3

75 = softmax

0

BB@Wz

2

664

h̃k

hkL

hkR

uk

3

775+ bz

1

CCA (A5)

2

4
rL

rR

rN

3

5 = sigmoid

0

@Wr

2

4
hkL

hkR

uk

3

5+ br

1

A (A6)

where Wh̃ 2 Rq⇥3q, bh̃ 2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
together the shared parameters to be learned, � is the
ReLU activation function and � denotes the element-
wise multiplication.

Intuitively, the reset gates rL, rR and rN control how
to actively select and then merge the left-child embed-
ding hkL , the right-child embedding hkR and the local
node information uk to form a new candidate activation
h̃k. The final embedding hk can then be regarded as a

It scales!



S E A R C H I N G  O V E R  S PA C E  O F  M O D E L S

•Using a class of models known as Gaussian 
Processes to model data 

• physics goes into the construction of a 
“Kernel” that describes covariance of data 

•Vocabulary of kernels + grammar for composition

51

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
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search was run to depth 10, using the base kernels from
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Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
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The interpretation of Large Hadron Collider (LHC) data in the framework of Beyond the Standard
Model (BSM) theories is hampered by the need to run computationally expensive event generators
and detector simulators. Performing statistically convergent scans of high-dimensional BSM theories
is consequently challenging, and in practice unfeasible for very high-dimensional BSM theories. We
present here a new machine learning method that accelerates the interpretation of LHC data, by
learning the relationship between BSM theory parameters and data. As a proof-of-concept, we
demonstrate that this technique accurately predicts natural SUSY signal events in two signal regions
at the High Luminosity LHC, up to four orders of magnitude faster than standard techniques. The
new approach makes it possible to rapidly and accurately reconstruct the theory parameters of
complex BSM theories, should an excess in the data be discovered at the LHC.

Introduction: A vast e↵ort is currently in progress
to discover physics Beyond the Standard Model (BSM)
at the Large Hadron Collider (LHC), motivated in part
by the possible connection between new particles at the
weak scale and the dark matter problem in astrophysics
and cosmology [1–3]. The absence of clear evidence for
BSM physics in current LHC data has been interpreted
in the context of simplified models [4, 5] as well as of
full models, such as various incarnations of the minimal
Supersymmetric Standard Model (MSSM) [6–10].
Such studies, and even more the interpretation of a

hypothetical excess in future data, are hampered by
the computationally intensive task of sampling the high-
dimensional parameter space of theoretical models, and
comparing, for each sample, the predicted signal with
actual data. For each set of input parameters one needs
in fact to: (i) generate a Monte Carlo (MC) sample of
collision events; (ii) run the sample through a detector
simulation; and (iii) compare the predicted signal with
data, often within signal regions (SRs) defined by exper-
imental cuts on observable quantities, such as missing
transverse energy, number of jets, momenta, and angles
[7]. This procedure is computationally very expensive,
and it constitutes the bottleneck for global analyses of
BSM theories, especially for those with high-dimensional
theory parameter spaces: in Ref. [6], for instance, it was
estimated that ⇡ 400 CPU-years would be needed to
obtain a statistically convergent scan of a 15-dimensional
supersymmetric model.
We demonstrate here that this bottleneck can be by-

passed by introducing machine learning (ML) tools that
can learn the mapping between theory and data, and then

rapidly and accurately predict signal region e�ciencies.
Gaussian processes: The number of events Ni in SR

i can be written as Ni = L�✏i, where L is the integrated
luminosity, � the production cross-section of the relevant
process(es), and ✏i 2 [0, 1] is the SR e�ciency (which
is in turn the product of the detector e�ciency times
the acceptance, i.e. the fraction of events that passes
analysis cuts). A classificationMLmethod was introduced
in Ref. [11] to predict whether or not a given point
in the BSM theory parameter space is compatible with
LHC data. Here, we are interested in the more general
regression problem of estimating the continuous quantities
✏i given the input BSM parameters ✓, i.e. in modeling
the relationship ✏i = fi(✓).
We specifically implement here the Gaussian process

(GP) regression model [12]. Instead of predicting a sin-
gle value, a GP has the virtue of equipping predictions
with consistent uncertainty estimates by means of a full
posterior distribution. The crucial ingredient of GPs is
the covariance function, which specifies the correlation
structure between the function value at di↵erent points in
the input parameter space. We use here for the covariance
function an anisotropic squared exponential kernel [12]

k(✓,✓0) = �2
f exp

0

@
X

j

(✓j � ✓0j)
2

2l2j

1

A (1)

where the sum is over the BSM theory parameters. �f

and lj are hyperparameters: �2
f encodes the intrinsic

variance of the function we are modeling, and the lj are
characteristic length-scales which determine how quickly
the function changes from point to point. Choosing the
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Abstract: A key research question at the Large Hadron Collider is the test of mod-

els of new physics. Testing if a particular parameter set of such a model is excluded

by LHC data is a challenge: it requires time consuming generation of scattering

events, simulation of the detector response, event reconstruction, cross section calcu-

lations and analysis code to test against several hundred signal regions defined by the

ATLAS and CMS experiments. In the BSM-AI project we approach this challenge

with a new idea. A machine learning tool is devised to predict within a fraction

of a millisecond if a model is excluded or not directly from the model parameters.

A first example is SUSY-AI, trained on the phenomenological supersymmetric stan-

dard model (pMSSM). About 300 000 pMSSM model sets – each tested against 200

signal regions by ATLAS – have been used to train and validate SUSY-AI. The code

is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with

an accuracy of at least 93%. It has been validated further within the constrained

MSSM and the minimal natural supersymmetric model, again showing high accuracy.

SUSY-AI and its future BSM derivatives will help to solve the problem of recasting

LHC results for any model of new physics.

SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line in-

terface to the program for quick testing purposes can be found at http://www.

susy-ai.org/.
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optimal values of these hyperparameters to model our
function is the learning task of GPs, and is done by the
standard procedure of evidence maximization [12].
The major limitation of standard GPs is that train-

ing scales cubically with the size n of the training data
set as it involves computing the inverse of n ⇥ n matri-
ces. Therefore, in practice, there is a limitation on the
amount of training data that can be used. To eliminate
this limitation we make use of distributed GPs (DGPs),
specifically the robust Bayesian Committee Machine [13]
algorithm, which avoids large matrices by partitioning
the training data into smaller data sets and distributing
the computation across independent computing nodes.

Natural supersymmetry: As a proof-of-concept, we
apply this new technique to the natural supersymmetry
(SUSY) scenario, in which fine-tuning is low, and the
electroweak scale is stabilized by a small subset of light
SUSY states (e.g., [14–18]). We focus in particular on
the minimal natural SUSY scenario of Refs. [19, 20], a
realistic, yet low-dimensional theory, in which the gluinos,
both stops, the left handed sbottom, and the higgsinos all
have masses at TeV scale while the remaining states are
decoupled. The six parameters of minimal natural SUSY
are: the supersymmetric Higgs mixing parameter µ, the
gluino mass parameter M3, the ratio of the two Higgs
vacuum expectation values tan�, the third generation
SU(2)-doublet squark soft-breaking parameter mQ3 , the
third generation SU(2)-singlet soft-breaking parameter
mtR , and the top trilinear soft-breaking term At.

Data: The experimental scenario we consider is
the planned high luminosity upgrade of the LHC (HL-
LHC) [21] with 3000 fb�1 worth of data collected at 14
TeV center-of-mass energy. We focus on two mutually
exclusive SRs defined in Ref. [22], for which the ATLAS
collaboration provides background estimates.1 These SRs
are optimized for direct production of stops, the most rel-
evant production channel for natural SUSY. The typical
decay channels for the stop are: top or bottom quarks,
W/Z/Higgs bosons, and the lightest neutralino. The de-
tector signature is the presence of several jets (including
b-jets), large missing transverse energy, and possibly lep-
tons. We refer to the ATLAS note for the full definitions
of the SRs, and we focus here on the 0-lepton and a
1-lepton SR.

Training and testing: For training and test data we
analyzed 18 647 samples generated in Ref. [20], for which
SR e�ciencies were calculated using SPheno 3.2.4 [23],
Pythia 8.210 [24, 25] with default parton distribution
function set [26], NLLFAST 3.1 [27–32], and Check-

MATE 1.2.1 [33–36] with Delphes 3.10 [37] and Fast-

jet 3.0.6 [38–40].

1 In Ref. [22] they vary the cuts as a function of the stop mass. We
use the cuts optimized for 1.1 TeV.

FIG. 1. The DGP prediction, ✏dgp1` , versus the MC prediction,
✏mc
1` , for the 1-lepton signal region. The black circles are 2000
test points in the parameter space of natural SUSY. The errors
on ✏dgp1` are those predicted by the DGP itself. The orange line

shows the desired behavior ✏dgp1` = ✏mc
1` . The insert shows how

the distribution of (✏dgp1` � ✏mc
1` )/�

dgp
1` (gray) compares with the

standard normal distribution N(0, 1) (orange).

We used 16 647 of these samples to train DGPs for
the two SRs, with one single level architecture with an
ensemble of 256 GP. Training was fast due to the use of
the DGP algorithm and took approximately 15 minutes on
a desktop computer with a 4.0 GHz Intel 4790K processor.
We then tested the predictions of the trained DGPs on the
remaining 2000 points. In Fig. 1 we show the e�ciency
predicted by the DGP model in the 1-lepton SR, ✏dgp1` ,
versus the values calculated with the full MC calculation,
✏mc
1` , for these 2000 test points. The DGPmodel accurately
predicts the e�ciencies, which cluster around the orange
line defined by ✏dgp1` = ✏mc

1` , with a spread consistent with

the DGP error estimate, �dgp
1` . We can quantify the

agreement by calculating the �2; for both the 0-lepton and
1-lepton SRs we get �2 ⇡ 1300, while naively expecting
�2 = 2000± 64 given the 2000 degrees of freedom. The
reason for these low values of �2 is that the DGP model
slightly overestimates its error. We visualize this in the
insert of Fig. 1 where we see that the distribution of
(✏dgp1` �✏mc

1` )/�
dgp
1` is more peaked than the standard normal

distribution N(0, 1).

Reconstruction: The DGP model, thus, e↵ectively
acts as a surrogate model for the full simulation chain,
opening up new opportunities in the interpretation of
LHC data. For example, the DGP model can rapidly
reconstruct the theory parameters of a BSM model in the
case where an excess is observed on top of the Standard
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Technical Solution:

Workflow (i.e. logic which steps to run in which order: reconstruction → analysis→ fit)

• in easy to write / read text based format (YAML)
• generic workflow language “yadage” based on graphs. No assumption on how you 

run your analysis. Should be able to accommodate your workflows.
• integrated into CERN Analysis Preservation. 
• re-run workflow using tool that interprets info stored in CAP
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Yadage and Packtivity – analysis preservation using

parametrized workflows

Kyle Cranmer1 and Lukas Heinrich1

1 Department of Physics, New York University, New York, USA

E-mail: lukas.heinrich@cern.ch

Abstract. Preserving data analyses produced by the collaborations at LHC in a parametrized
fashion is crucial in order to maintain reproducibility and re-usability. We argue for a declarative
description in terms of individual processing steps – “packtivities” – linked through a dynamic
directed acyclic graph (DAG) and present an initial set of JSON schemas for such a description
and an implementation – “yadage” – capable of executing workflows of analysis preserved via
Linux containers.

1. Introduction
Data analyses of LHC data consist of workflows that utilize a diverse set of software tools
to produce physics results. The tools range from large software frameworks like Gaudi[1] to
single-purpose scripts written by individual analyzers or analysis teams. The analysis steps that
lead to a particular physics result are often not reproducible without significant assistance from
the original authors. This severely limits the capability to re-execute the original analysis or
to re-use its analysis procedures in new contexts. An important application for such re-use is
the systematic re-interpretation of a given analysis with respect to alternative models of new
physics[2]. Therefore, it is desirable to have a system to archive analysis code as well as the
analysis procedure in a manner, that enables both re-execution and re-use. This document
presents work on workflow capture that addresses these issues in a platform and language-
agnostic manner.

1.1. Short anatomy of analysis workflows
The driving paradigm of LHC analyses is the selection of events within the experiments’
dataset and, typically, comparing those events to expectations derived using both data-driven
techniques and Monte-Carlo simulations. Since every collision event (whether real or simulated)
is independent of the others, the data analysis problem becomes embarrassingly parallel.
Consequently, the most common task in a LHC analysis is the parallel processing of events
by algorithms that transform the event data into higher-level representations (e.g. from raw
detector data to reconstructed ‘analysis objects‘) or perform event selection or otherwise reduce
the dataset size, for example by selectively storing only partial event information (‘thinning’).

The main reconstruction transformations are often handled either on a collaboration-wide
or physics working group level and use centrally managed and documented code with fixed
release schedules and procedures. Transform configurations, such as the used executable and

https://arxiv.org/pdf/1706.01878.pdf
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Where shall we sample next?
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Bayesian optimisation

for t = 1 : T ,

1. Given observations (x
i

, y
i

) for i = 1 : t, build a probabilistic
model for the objective f .

Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

x

t+1 = argmax
x

u(x)

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y

t+1 at x
t+1.

4 / 17
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Plugging everything together (t = 0)

x

t+1 = argmax
x

UCB(x)
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Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

• Upper confidence bound UCB(x) = µ
GP

(x) + �
GP

(x);

• Probability of improvement PI(x) = P(f (x) � f (x+
t

) + );

• Expected improvement EI(x) = E[f (x)� f (x+
t

)];

• ... and many others.

where x

+
t

is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., ) for
controlling the exploration-exploitation trade-o↵.

• Search in regions where µ
GP

(x) is high (exploitation)

• Probe regions where uncertainty �
GP

(x) is high (exploration)
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... and repeat until convergence (t = 1)
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Software

• Python
Spearmint https://github.com/JasperSnoek/spearmint
GPyOpt https://github.com/SheffieldML/GPyOpt
RoBO https://github.com/automl/RoBO

scikit-optimize https://github.com/MechCoder/scikit-optimize

(work in progress)

• C++
MOE https://github.com/yelp/MOE

Check also this Github repo for a vanilla implementation
reproducing these slides.
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GitHub Repo for previous slides: 
https://github.com/glouppe/talk-bayesian-optimisation 

https://github.com/glouppe/talk-bayesian-optimisation


h t t p s : / / g i t h u b . c o m / c r a n m e r / a c t i v e _ s c i e n c i n g

Putting it all together

https://github.com/cranmer/active_sciencing


S Y N T H E S I S
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active learning / sequential design / black box optimization

reusable workflows
simulation-based 

 inference engines

Active Sciencing
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A C T I V E  S C I E N C I N G  D E M O

•Input:  
• workflow for performing “real” experiment that returns data 

• workflow for running simulator given parameters of theory and 
experimental configruration 

•Demo shows use of likelihood-free inference technique & Bayesian 
Optimization to measure the Weinberg angle and optimize beam energy 
(eg. just above or below MZ/2)
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https://github.com/lukasheinrich/weinberg-test

E N C A P S U L AT I N G  T H E  S I M U L AT I O N
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https://github.com/lukasheinrich/weinberg-test

E N C A P S U L AT I N G  T H E  S I M U L AT I O N



C O N C L U S I O N S

• (verbal)
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