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New data sources

https://www.esciencecenter.nl/project/summer-in-the-city

https://www.esciencecenter.nl/project/summer-in-the-city


The ‘Big Science’ era



The other ‘Big Data’ 



Computing challenge: towards 

exascale



The data challenge
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Data increasingly incomputable?

Preeti Gupta UC S.C. on Kryder’s law







How we work

• eScience Research Engineers

• Partnership with domain scientist

– Open calls for proposals

– All of science 

• Public private partnerships

• (inter)National coordination and advocacy (PLAN-E for Europe)

• Generic eScience Technology Platform, eStep (software, open 

access, knowledge basis)



Core eScience

Technologies 
eStep.eScienceCenter.nl

estep.esciencecenter.nl




Radio telescope system health 

management (error detection)
Boonstra (Astron), Meijer (NLeSC) et al



Automatic classification

 Stations not sending data

 Stations with internal errors (RFI?)

 Ionospheric scintillation

 Stations having low gain

 Non-linearities in receivers/ADC's

 Dead cobalt node

 Extreme external RFI

 Solar bursts

 ….



Simple distance metric

d = Σ | - |



CNN distance metric

Autoencoder image by Chervinskii



Results viewer



– Software radio telescope searching for faint 

signals from the early universe

– The signal is order of magnitude fainter than 

the most contaminating signals

– Need to eliminate all systematic (instrumental, 

ionospheric etc.) errors (i.e. “calibrated”)

– The calibration in parallel on different data 

frequencies which requires processing of many 

terabytes of data

DIRAC
Yatawatta (Astron), Diblen, Spreeuw (NLeSC) et al.



• Complex non-linear optimization problem with millions of unknown parameters

• global calibration scheme is needed

• Solutions should be continuous over frequency 

DIRAC - Calibration
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SAGECAL was developed by 

ASTRON for LOFAR calibration



DIRAC - eScience + Big data
The existing code

SAGECAL

Used for calibration of 

LOFAR

Candidate for SKA

● written in C/C++

● using MPI

● has GPU support

eScience Center contribution

● Migrating the 

optimized code to big 

data (Apache 

Spark)platform

● Optimizing the 

workflow for Big data 

platform

● Optimization and 

generalization of the 

existing code for 

the state-of-the-art 

GPU architectures

GPU



A Health research problem: Global 

Distributed Routine Data Registry

• Keep data locally

• Standardize it according 
to an ontology

• Make and send around 
learning and quality 
indicators 

• Share the results & 
quality indicators – not 
the data!!

Maastro, Andre Dekker



KM3NeT – Neutrino Telescope
• Huge instrument at the bottom of the 

Mediterranean Sea

• Pretty high data rate due to background noise 

from bioluminescence and Potassium-40 decay

• Current event detection / reconstruction 

happens on pre-filtered data (so called L1 hits) 

• Our goal: Work towards event detection based 

on unfiltered data (so called L0 hits)



Correlating hits
• Hits are correlated based on their time 

and location

• Correlations can only occur in a small 

window of time

• Density of the narrow band depends 

on correlation criterion in use

Try-out two designs:

• Dense pipeline that stores the narrow 

band as a table

• Sparse pipeline that stores the matrix 

in compressed sparse row (CSR) form

Correlation matrix

hit no.

hit no.



Data representation

– Dense

– Sparse
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Some conclusions
• Data and compute intensive research questions

• Typically: optimization problems (parameter estimation), very large 

data sets, distributed data sets,….

• Similar problems in all of research

• Generic eScience methods: efficient computing (distributed, 

accelareted, orchestrated), data management (distributed databases 

etc.), data analytics (machine learning, deep learning, distributed 

learning, visual analytics)

 eScience expertise and support &  Research Software Directory (eStep) 



National e-Infrastructure






