

Inter-experimental LHC Machine Learning Working Group Activities Sergei V. Gleyzer University of Florida

LH(PHYSI(S (ENTRE AT (ERN

Outline

- Inter-experimental LHC Machine Learning Working Group
- Machine Learning Applications at the LHC
- Community Efforts

Inter-experimental LHC Machine Learning Working Group <u>iml.cern.ch</u>

- Sharing of expertise among LHC (and other HEP) experiments
 - ATLAS, CMS, LHCb, ALICE, Belle-II, neutrino experiments
 - ~450 participants
- Exchange between particle physics and machine learning communities
- Software development and maintenance
- Forum, Training and Education

Monthly <u>meetings</u> around machine learning topics relevant to HEP community:

- Deep Learning
- Software and Tools
- Hardware Applications
- Unsupervised Learning
- Anomaly Detection
- Multi-class/Multi-objective Learning
- Bayesian ML and GANs
- Theory Applications

IML Workshop

First IML Workshop at CERN

- March 20-22, 2017
 - ~300 participants
 - Industry session
 - Quark/gluon tagging challenge
 - Physics Object Tagging Workshop
 - HEP-ML Community White Paper
- More workshops forthcoming

LHC Applications and Challenges

Primarily Classification

- Low Level:
 - Particle identification

Photon or a jet?

- Pattern recognition Tracks, vertices
- High Level:

New Physics searches

Higgs/SUSY event or background? Jet sub-structure

Higgs Discovery

Machine Learning used in Higgs Discovery

- Event selection
- Identification of particles
- Identification of interactions
- Energy regression

IJF

UNIVERSITY of

UF Upcoming Challenges

Orders of magnitude between signals and backgrounds

UF Upcoming Challenges

Data size:

- LHC 15,000,000 Tb 2010 2035
- Distance
- Resources not up as fast as data volume

06/19/2017

Big Data in Physics and Astronomy

Sergei V. Gleyzer

Topics of interest

Particle Tracking

06/19/2017 Trigger

Fast Simulation

Object Identification

Imaging Calorimetry

Simulation

14

Deep Kalman RNNs

Deep ML +FPGA

Generative Models, Adversarial Networks

FCN, Recurrent, LSTM NN

Convolutional DNN Multiobjective Regression

Deep Learning

Deep Learning

Higgs Boson Example:

P. Baldi, et. al. 2014

Tuning deep neural network architectures.

Hyper parameters	Choices
Depth	2,3,4,5,6 layers
Hidden units per layer	$100,\!200,\!300,\!500$
Learning rate	0.01, 0.05
Weight decay	0, 0.00001
Pre-training	none, autoencoder
	multi-task autoencoder
Input features	low-level, high-level
	complete set

Best:

- 5 hidden layers
- 300 neurons per layer
- Tanh hidden units, sigmoid output
- No pre-training
- Stochastic gradient descent
- I Mini batches of 100
- D Exponentially-decreasing learning rate
- Momentum increasing from .5 to .99 over 200 epochs
- Weight decay = 0.00001

8% improvement

Papers in HEP:

- Jet images and deep learning: <u>arxiv1511.05190</u>
- Jet substructure and deep learning: <u>http://inspirehep.net/record/1437937/</u>
- Parton shower uncertainties and jet substructure: <u>http://inspirehep.net/record/1485081?ln=e</u>
 <u>n</u>
- Deep learning for ttH<u>http://inspirehep.net/record/1491175?ln=en</u>
- Nova <u>http://inspirehep.net/record/1444342</u>
- Daya Bay <u>arxiv1601.07621</u>
- Next: <u>http://inspirehep.net/record/1487439?ln=en</u>
- Microboone: <u>http://inspirehep.net/record/1498561?ln=en</u>

Background Rejection vs. Signal Efficiency

Background Rejection vs. Signal Efficiency

Significant improvements in performance

Convolutional Neural Networks

Photon-Induced EM Shower

mean energy distribution over 10k events

Electron-Induced EM Shower

mean energy distribution over 10k events

Beyond Classification

Single-Objective Regression

Train learning model to estimate a single function target or "objective"

• Ex. photon energy/muon momentum

With a machine learning algorithm

 Decision tree, random forest, neural network etc.

Single Target Example:

Inputs: shower information, photon coordinates, median event energy

UF Deep Learning Regression

Prediction Error

Multi-Objective Regression

UF Multi-Objective Regression

Simultaneous estimate of multiple functions or "targets"

- Possibly additionally correlated
 - N single-target models not as optimal lingo: "multi-task" learning
 - and more cumbersome
- Train a single model to simultaneously predict all targets

Methods:

- Regression decision trees
- Decision rules
- Decision rule ensembles
- Random forest
- Neural networks...

Trade-offs:

accuracy, model size, interpretability

X input variables {a, b, c, d...} – K of them strongly correlated Y target outputs to estimate {A, B, C, D...} – N of them strongly correlated

Challenge: build a predictive model to describe simultaneously all the outputs {A,B,C,D...}, provided a corresponding set of inputs.

UF Target Correlations

Target

Prediction-Target Difference

Physics Object Tagging

06/19/2017

Tracking

Track Extension with LSTM

40

- Repeat for each detector slice to obtain full prediction
- The LSTM memory state propagates relevant information from layer to layer

link

HEP.TrackX

30

Layer

Layer

Software and Tools

.. ...,_.

~ ~ ~ ~

Throughput Comparison

Single precision

Excellent throughput compared to Theano on same GPU

Hardware Applications

L1 Trigger Implementation In a good muon trigger we want to

- pass muons whose pt are truly above some threshold
- reject muons whose pt are truly below some threshold
- In L1 we operate online, it needs to be fast ~25ns

So we train BDTs on a set of simulated muons to predict the Pt

- There are way more low pt muons than high pt ones
- · Misinterpreting low pt muons as high ones will increase the rate a lot and you have a terrible trigger (lots of bad events)
- So we focus on low pt events: (1/pt 1/pt')²
 - Using a specific transformation of the target to focus on low pt events $-1/pt \rightarrow$ makes low pt a large number
 - Using Least Squares to further focus on low pt events
 - Turned low pt into large numbers and we square differences in large numbers, hence the focus

How to implement in hardware?

- In hardware the inputs must be discrete. so we decide upon a bit scheme for the features
 - 4 bits for feature 1, 8 bits for feature 2, etc
- Run over all possibilities to Pt for every word
- Now we have a map from every possible discretized input → BDT Prediction
- Call this a look up table
- Run this in FPGAs in the L1 Trigger for EMTF

Write look up table using BDT All Possibilities $0000000 \rightarrow BDT \rightarrow Pt(0000000)$ $00000001 \rightarrow BDT \rightarrow Pt(00000001)$ Look Up Table written, don't need BDT anymore 00000000 = Pt(0000000)00000001 = Pt(00000001)

... use this in hardware, it's fast

3

Low $Pt \rightarrow High Pt$

link

Neuromorphic

Theory and Phenomenology

The problem (in a nutshell)

Geometry meets field theory:

Toric Calabi-Yau 3-fold

Can be used to calculate the "minimum" volume V_{min} of the base of the geometry (5 dim. subspace)

Q: Is V_{min} determined by topological data ?

D3-branes

 ${\cal N}=1$ supersymmetric gauge theory in 4d (- Gauge and matter content determined by geometry !

Wide CNN

SUSY-Al in the pMSSM (99CL) 99.7% accuracy on 51.6% of total data @ 8TeV

99.7% accuracy on 47.6% of total data @ 13 TeV

- Unsupervised Learning and Anomaly
 Detection
- Generative adversarial models for fast detector simulation
- Multi-class applications
- Understanding uncertainties associated with decision-making in machine learning applications

HEP Community White Paper in Machine Learning

51

Sergei V. Gleyzer

UFCOMPANIE Community White Paper HEP Software Foundation

- HSF link
- Community White Paper
 - <u>link to CWP</u>
 - Machine Learning
 - Identification of challenges
 - Roadmap to address them
 - Important to think of these issues now
 - Impact on how we dedicate resources and design our software

Summary

LHC physics and computing challenges will require significant progress:

- Higher backgrounds and pileup, data volume, unknown new physics
 - Machine learning offers a promising direction
 - An opportunity to examine new areas of ML applications to HEP
- IML an inter-experimental effort to foster collaboration and progress in HEP-ML