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• Inter-experimental LHC Machine 

Learning Working Group

• Machine Learning Applications at 

the LHC

• Community Efforts



• Sharing of expertise among LHC (and other HEP) 
experiments
– ATLAS, CMS, LHCb, ALICE, Belle-II, neutrino experiments

– ~450 participants

• Exchange between particle physics and machine learning 
communities

• Software development and maintenance

• Forum, Training and Education
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Inter-experimental LHC Machine Learning 

Working Group iml.cern.ch

IML

http://iml.cern.ch


Working Format
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Monthly meetings around machine learning 
topics relevant to HEP community:

• Deep Learning

• Software and Tools

• Hardware Applications

• Unsupervised Learning

• Anomaly Detection

• Multi-class/Multi-objective Learning

• Bayesian ML and GANs

• Theory Applications

https://iml.web.cern.ch/meetings


IML Workshop
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First IML Workshop at CERN 

• March 20-22, 2017

– ~300 participants

– Industry session

– Quark/gluon tagging challenge

– Physics Object Tagging Workshop

– HEP-ML Community White Paper

• More workshops forthcoming

https://indico.cern.ch/event/595059/


LHC Applications and 

Challenges
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Identifying boosted objects 

15'

vs'

Identifying boosted objects 

15'

vs'

LHC Applications

Primarily Classification
– Low Level:

• Particle identification

Photon or a jet? 

• Pattern recognition
Tracks, vertices

– High Level:

• New Physics searches

Higgs/SUSY event or background?

Jet sub-structure

06/19/2017 Big Data in Physics and Astronomy                               Sergei V. Gleyzer 8



Higgs Discovery
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Machine Learning used 

in Higgs Discovery
• Event selection

• Identification of particles

• Identification of interactions

• Energy regression

Improvement in analysis 

from all four areas



Upcoming Challenges
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Orders of magnitude 

between signals and 

backgrounds
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Event Complexity



Upcoming Challenges

Data size:

– LHC 15,000,000 Тb    2010 – 2035

– Resources not up as fast as data volume
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Unknown 

Physics



Topics of interest
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Imaging Calorimetry

Object 

Identification

Interesting areas
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Particle 

Tracking

Fast 

Simulation

Trigger
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Figure 2: An illust rat ion of the deep convolut ional neural network architecture. The first

layer is the input jet image, followed by three convolut ional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a st ride length of 2. The dense

layer consisted of 128 units.

All neural network architecture t raining was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA plat form. The data consisted of the 100k jet images per pT -bin, part it ioned into 90k

training images and 10k test images. An addit ional 10% of the t raining images are randomly

withheld as validat ion data during t raining of the model for the purposes of hyperparameter

opt imizat ion. He-uniform init ializat ion [49] was used to init ialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Simulation



Deep ML +FPGA

FCN, Recurrent, 

LSTM NN

Convolutional DNN 

Interesting areas
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Deep Kalman

RNNs

Generative Models,

Adversarial Networks

Multiobjective Regression 



Deep Learning
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Deep Learning

Higgs Boson Example:
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Higgs Boson Detection

Deep network improves AUC by 

8%
Nature Communications, 

July 2014
BDT= Boosted Decision 

Trees in TMVA package

Higgs Boson Detection

Tuning deep neural network 

architectures.
Best:

● 5 hidden layers

● 300 neurons per layer

● Tanh hidden units, sigmoid output

● No pre-training

● Stochastic gradient descent

● Mini batches of 100

● Exponentially-decreasing learning rate

● Momentum increasing from .5 to .99 over 

200 epochs

● Weight decay = 0.00001

P. Baldi, et. al. 2014

8% improvement



Deep Learning
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Papers in HEP:

• Jet images and deep learning: arxiv1511.05190

• Jet substructure and deep 
learning: http://inspirehep.net/record/1437937/

• Parton shower uncertainties and jet 
substructure: http://inspirehep.net/record/1485081?ln=e
n

• Deep learning for 
ttHhttp://inspirehep.net/record/1491175?ln=en

• Nova http://inspirehep.net/record/1444342

• Daya Bay arxiv1601.07621

• Next: http://inspirehep.net/record/1487439?ln=en

• Microboone: 
http://inspirehep.net/record/1498561?ln=en

https://arxiv.org/abs/1511.05190
http://inspirehep.net/record/1437937/
http://inspirehep.net/record/1485081?ln=en
http://inspirehep.net/record/1491175?ln=en
http://inspirehep.net/record/1444342
https://arxiv.org/abs/1601.07621
http://inspirehep.net/record/1487439?ln=en
http://inspirehep.net/record/1498561?ln=en


Deep Learning
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Shallow

Deep NN

BDT

Deep NN

Significant improvements in performance



Deep Learning

Convolutional Neural Networks
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End-to-End Approach
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link

https://indico.cern.ch/event/631610/contributions/2597471/attachments/1465436/2265270/IML_2017MAY24_v1.pdf
https://indico.cern.ch/event/631610/contributions/2597471/attachments/1465436/2265270/IML_2017MAY24_v1.pdf


CVN on NOvA
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link

https://indico.cern.ch/event/595059/contributions/2497381/attachments/1431861/2199836/20170322PsihasCVNtalkIML.pdf


Beyond Classification
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Single-Objective Regression
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Train learning model to estimate a 

single function target or “objective”

• Ex. photon energy/muon momentum

With a machine learning algorithm

• Decision tree, random forest, neural 

network etc.



Mauro Donegà: Data Science @ LHC 2015 13

Photon Energy regression
How to improve the corrections ? Add more variables in the description :  

- difficult to model correctly the correlations  
- curse of dimensionality  

Move to a multivariate approach: BDT (Gradient Boosting)

Use many more variables (first try O(80) then down to O(20) ) 

correct treatment of the correlations by the BDT.

Basically add whatever variable makes sense to describe 

the photon 

“photon shape” variables 

photon coordinates (eta, phi) 

median energy density ρ in the event 

Target Variable: Erec/Etrue  

10-30% improvement on resolution depending 

on the energies and region of the detector

Training sample: again single particle gun MC 

(uniform energy spectrum [3-300] GeV and 

uniform in the detector volume (η,φ)

H→γγ MC 

Illustration only

parametric

BDT

Still we get one value per bin of the input space 

Photon Energy

Single Target Example:

Inputs: shower information, photon coordinates, 

median event energy 

Target Output: EMEASURED/ETRUE

~10-30% improvement

in resolution 
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Deep Learning Regression
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Higher

is better

Shallow

Deeper
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Multi-Objective Regression



Multi-Objective Regression

Simultaneous estimate of multiple 
functions or “targets” 

• Possibly additionally correlated

– N single-target models not as optimal 
lingo: “multi-task” learning

– and more cumbersome

• Train a single model to 
simultaneously predict all targets
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Applicable Models

Methods:

• Regression decision trees

• Decision rules

• Decision rule ensembles

• Random forest

• Neural networks…

Trade-offs: 

• accuracy, model size, interpretability 
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Multi-objective Example

X input variables {a, b, c, d…}

– K of them strongly correlated

Y target outputs to estimate {A, B, C, D…} 

– N of them strongly correlated

Challenge: build a predictive model to 

describe simultaneously all the outputs 

{A,B,C,D…}, provided a corresponding set 

of inputs.
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Target Correlations

Target 

Correlations 
Prediction-Target Difference 

Very close to Zero 
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Physics Object Tagging
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Object Tagging

link

https://indico.cern.ch/event/595059/contributions/2497378/attachments/1431700/2199515/IML_DeepTop.pdf


35

Object Tagging

link

06/19/2017

https://indico.cern.ch/event/595059/contributions/2497378/attachments/1431700/2199515/IML_DeepTop.pdf


Tracking
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37

HEP.TrackX

06/19/2017

link

https://indico.cern.ch/event/595059/contributions/2498118/attachments/1431635/2199380/03222017heptrkx_IML.pdf
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HEP.TrackX

06/19/2017

link

https://indico.cern.ch/event/595059/contributions/2498118/attachments/1431635/2199380/03222017heptrkx_IML.pdf


Software and Tools
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DNN Apache Spark

link

https://docs.google.com/presentation/d/1hRemxV9xs-ljB4N4CRO4kafsENxTq86UJGfnbpzpJAo/pub#slide=id.g1b84c42ccf_0_0


Deep Learning
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Throughput Comparison

2.7 

* 

Theano

Excellent throughput 

compared to Theano

on same GPU

Single precision



Hardware Applications
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link

https://indico.cern.ch/event/571105/contributions/2379237/attachments/1376336/2090111/bdt_done_with_loss_functions_hardware_pres.pdf
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Neuromorphic

link

https://indico.cern.ch/event/571105/contributions/2364273/attachments/1376474/2090371/KM-ML-CERN-11-2016.pdf


Theory and Phenomenology
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link

https://indico.cern.ch/event/632141/contributions/2628975/attachments/1478233/2290881/CERN_June_17_-_ML_meeting.pdf
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link

https://indico.cern.ch/event/632141/contributions/2622315/attachments/1478249/2290907/20170616_IML.pdf


Other areas
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• Unsupervised Learning and Anomaly 
Detection

• Generative adversarial models for 
fast detector simulation

• Multi-class applications 

• Understanding uncertainties 
associated with decision-making in 
machine learning applications



HEP Community White 

Paper in Machine Learning
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Community White Paper

HEP Software Foundation

• HSF link

• Community White Paper

– link to CWP

– Machine Learning

• Identification of challenges

• Roadmap to address them 

– Important to think of these issues now

• Impact on how we dedicate resources and design 
our software
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http://hepsoftwarefoundation.org/activities/cwp.html
http://hepsoftwarefoundation.org/cwp.html
https://docs.google.com/document/d/1o9S0XE4ly4-LZh9y96DG-U7HH61m2cHboV6xSt1tI0g/edit


Summary

LHC physics and computing challenges will 
require significant progress: 

• Higher backgrounds and pileup, data 
volume, unknown new physics

– Machine learning offers a promising direction

– An opportunity to examine new areas of ML 
applications to HEP

• IML an inter-experimental effort to foster 
collaboration and progress in HEP-ML
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