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What is “Big Data”?
“Big data is like teenage sex: everyone talks
about it, nobody really knows how to do it,
everyone thinks everyone else is doing it, so
everyone claims they are doing it . . . ” Dan Ariely
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Astronomy and Machine Learning?
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2015→ SDSS
(in total: 100TB)

2024→ EELT
(per night: 2TB)

2021→ LSST
(per night: 30TB)

2025→ SKA
(per hour: 10PB)

Challenges
Find interesting objects such as distant galaxies or very rare stars! Combine various data sources! Handle
billions of objects per night→ Process and analyze all the data efficiently and at low cost!

Data Analytics
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Often very time-consuming!
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k = 1 k = 5 k = 10

The k-nearest neighbor classification algorithm

Require: Let T = {(x1,y1), . . . ,(xn,yn)} ⊂ Rd ×{1, . . . ,C} be the set of training
examples and k be the number of nearest neighbors.

1: for each test example x do
2: Compute the distance D(x,xi) to each training example xi .
3: Select Nx ⊂ T , the set of the k closest training examples to x.
4: f (x) = argmaxc ∑(xi ,yi )∈Nx

I(c = yi)
5: end for

Can you deal high-dimensional data?
Can you handle millions of training/test points?
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Example: Support Vector Machines

1 Q = K�yyT ∈ Rn×n and c = (−1, . . . ,−1)T ∈ Rn

2 G =

(
−I
I

)
with I ∈ Rn×n and g = (0, . . . ,0,C, . . . ,C)T ∈ R2n

3 A = yT ∈ R1×n and a = 0 ∈ R1

Here, � denotes the elementwise product,
y = (y1, . . . ,yn)T ∈ Rn, and kernel
matrix K ∈ Rn×n with Ki,j = 〈xi ,xj〉.

Large-Scale Machine Learning in Astronomy
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maximize
β∈[0,C]n

n

∑
i=1

βi −
1
2

n

∑
i=1

n

∑
j=1

βiβjyiyj〈xi ,xj〉

s.t.
n

∑
i=1

βiyi = 0
minimize

x∈Rn

1
2

xTQx + cTx

s.t. Gx≤ g

Ax = a

Solving such a quadratic program generally takes O(n3) time . . .
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k = 1 k = 5 k = 10

The k-nearest neighbor regression algorithm

Require: Let T = {(x1,y1), . . . ,(xn,yn)} ⊂ Rd ×R be the set of training examples and
k be the number of nearest neighbors.

1: for each test example x do
2: Compute the distance D(x,xi) to each training example xi .
3: Select Nx ⊂ T , the set of the k closest training examples to x.
4: f (x) = 1

k ∑(xi ,yi )∈Nx
yi

5: end for
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λ = small λ = large λ = middle

Models

Let T = {(x1,y1), . . . ,(xn,yn)} ⊂ Rd ×R be the set of training examples, X ∈ Rn×d

containing the patterns xi as rows, and λ > 0. Goal: Find a model f ∈H in a hypothesis
space H that minimizes

minimize
f∈H

n

∑
i=1

(f (xi)− yi)
2

︸ ︷︷ ︸
Small Loss

+ λ‖f‖2︸ ︷︷ ︸
Small Complexity

(1)

Here: Models of the form f (x) = ∑
n
j=1 cj K (xj ,x), where c ∈ Rn and K : Rd ×Rd → R is

a so-called kernel (many machine learning techniques are based on this formulation!).
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Example: Regularized Least-Squares
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λ = small λ = large λ = middle

Computational Complexities

1 Training: One can compute optimal coefficients in O(n3) operations. In addition,
one needs to compute the kernel matrix beforehand (typically O(·n2) time and
space).

2 Testing: Once the coefficients c∗ have been computed, one can apply the model f
to new x ∈ Rd via f (x) = ∑

n
j=1 cj K (xj ,x). This takes O(n) time per instance!

Space Reduction & Speed-Ups: We need O(n2) space to store K. Various ways exist to reduce the

runtime/space consumption. A prominent one is to approximate the kernel matrix (e.g., via

K̃ = KT
R(KR,R)

−1KR ∈ Rn×n with R rows/columns being randomly selected).
Can you train a model for one million training instances?

Can you deal with one billion test points?



U N I V E R S I T Y O F C O P E N H A G E N

Example: Unsupervised Learning
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Outlier Detection
“I have 50 million objects and each of them is described via 20 values (features). Can you find the

outliers for me, i.e., objects that are somehow different from the other ones?”

Joint work with Ashish Mahabal
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Machine Learning: Many Problems+Techniques!
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http://scikit-learn.org/stable/tutorial/machine_learning_map/

http://scikit-learn.org/stable/tutorial/machine_learning_map/
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Large-Scale Machine Learning

1 Interface: Machine Learning + Data Structures + Optimization + HPC + . . .
(often depends on the particular application domain!)

2 Key Question: How can we analyze all the data efficiently and at low cost?

“Often, it is not the best algorithm that wins,
but the one that has the most data!”

[Andrew Ng]
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https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
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http://www.top500.org

http://www.top500.org
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Graphics Processing Units (GPUs)
Can nowadays also be used for general computations and are well-suited for
massively-parallel programming. Example: Adding two vectors x,y ∈ R10000

1 CPU: Computes x1 + y1, x2 + y2, . . . (sequentially)

2 GPU: Core i computes xi + yi (in parallel)



U N I V E R S I T Y O F C O P E N H A G E N

Massively-Parallel Programming?

Large-Scale Machine Learning in Astronomy
Slide 21/42

Graphics Processing Units (GPUs)
Can nowadays also be used for general computations and are well-suited for
massively-parallel programming. Example: Adding two vectors x,y ∈ R10000

1 CPU: Computes x1 + y1, x2 + y2, . . . (sequentially)

2 GPU: Core i computes xi + yi (in parallel)
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Example I: Semi-Supervised SVMs
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HARD OPTIMIZATION PROBLEM

minimize
y∈{−1,+1}u ,

w∈H , b∈R, ξ
′∈Rl , ξ∈Ru

1
2
‖w‖2 + C′

l

∑
i=1

ξ
′
i + C

u

∑
i=1

ξi

s.t. y ′i (〈w,Φ(xi )〉+ b)≥ 1−ξ
′
i , ξ
′
i ≥ 0,

and yi (〈w,Φ(xl+i〉) + b)≥ 1−ξi , ξi ≥ 0
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Example I: Semi-Supervised SVMs
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Quasi-Newton Framework (Simplified)

1: Initialize matrices
2: . . .
3: for i = 1 to τ do
4: . . .
5: while termination criteria not fulfilled do
6: Compute Fαi (cj) and ∇Fαi (cj)
7: . . .
8: end while
9: . . .

10: end for
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Example I: Speed-Up
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Figure 3: Runtime comparison between the CPU implementation and its GPU variant
given the epsilon data set (λ = 1).

Intel i7@4.00GHz (1 core used)
GeForce Titan Z (1 device, 2880 cores, 6GB RAM)
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Even with k-d trees, it can easily take hours or even days. This
is not gonna be fast enough for future datasets/tasks!
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Example II: Buffer k -d Trees
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Buffer k -d Trees (Sketch)

1 Top tree: First levels of a standard k -d tree
(i.e., its median values), laid out in memory
in a pointer-less manner.

2 Leaf structure: Training patterns, sorted
in-place during the construction of the top
tree (w.r.t. the median values). Each block of
the leaf structure corresponds to a leaf of the
top tree.

3 Buffers: One buffer for each leaf of the top
tree; each buffer can store a predefined
number B of query indices.

4 Queues input and reinsert: Two (first-
in-first-out) queues of size m.

leaf structure

buffers

top tree

input

PROCESSALLBUFFERS

reinsert
FINDLEAFBATCH

Key Idea: Reorganize tree traversal and use GPU for compute-intensive parts!
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Example II: Buffer K-D Trees
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psf colors psf mag psf model mag all mag all colors all
(d = 4) (d = 5) (d = 10) (d = 15) (d = 12) (d = 27)

kdtree(cpu) 71 (× 5) 57 (× 5) 527 (×15) 4616 (×22) 16394 (×34) -
bufferkdtree(gpu) 14 12 36 210 478 1717

Table 1: Runtime comparison in seconds (speed-up in brackets)

Fabian Gieseke, Cosmin E. Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger
Buffer k-d Trees on Multi-Many-Core Systems, BDL, 2016.
Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d Trees:
Processing Massive Nearest Neighbor Queries on GPUs, ICML, 2014.

Intel i7@3.40GHz (4 cores, 8 hard. threads), GeForce GTX 770 (1536 cores, 4GB RAM)
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Intel i7@3.40GHz (4 cores, 8 hard. threads), GeForce GTX 770 (1536 cores, 4GB RAM)
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https://www.nvidia.com/en-us/deep-learning-ai/
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Example IV: Distributed Computing
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Key Ideas

1 Store data on many computers (Hadoop/Spark).

2 Bring computations to the data!

3 Derive efficient distributed approaches . . .
Example: Random forests for billions of training instances (tricky!)
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Photometric k-NN Regression→ Quasars
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f (x) =
1
k ∑

xi∈Nk (x)

yi

Nearest Neighbor Regression

Polsterer, Zinn, Gieseke. Finding New High-Redshift Quasars

by Asking the Neighbours, MNRAS, 2013.
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Photometric k-NN Regression→ SSFR
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f (x) =
1
k ∑

xi∈Nk (x)

yi

Stensbo-Smidt, Gieseke, Zirm, Pedersen, Igel. Sacrificing information for the

greater good: how to select photometric bands for optimal accuracy, MNRAS, 2017.

Nearest Neighbor Regression Physical Model
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Special Problem: Sample Selection Bias
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Photometric Target Selection

• Training data: All photometric objects with spectra

• Test data: All photometric objects!

Spectroscopic follow-up observations are made of potentially interesting objects.
This leads to a heavy sample selection bias!
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Photometric Target Selection

• Training data: All photometric objects with spectra

• Test data: All photometric objects!

Spectroscopic follow-up observations are made of potentially interesting objects.
This leads to a heavy sample selection bias!

What can we say about the true performance of a model?
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Sample Selection Bias?
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Adaptation of Regression Models
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λ = small λ = large λ = middle

minimize
f∈H ,b∈R

1
n

n

∑
i=1

L(yi , f (xi ) + b)︸ ︷︷ ︸
Small loss on training data

+ λ‖f‖2︸ ︷︷ ︸
Not too complex

Kremer, Gieseke, Pedersen, Igel. Nearest Neighbor Density Ratio Estimation
for Large-Scale Applications in Astronomy, Astronomy and Computing, 2015.

Beck, Lin, Ishida, Gieseke, Souza, Costa-Duarte, Hattab, Krone-Martins.
On the realistic validation of photometric redshifts, MNRAS, 2017.
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λ = small λ = large λ = middle

minimize
f∈H ,b∈R

1
n

n

∑
i=1

βiL(yi , f (xi ) + b)︸ ︷︷ ︸
Small loss on test data

+ λ‖f‖2︸ ︷︷ ︸
Not too complex

• Introduce reweighting coefficients β1, . . . ,βn ∈ R
• Estimate: βi = Ptest (xi )

Ptrain(xi )

Kremer, Gieseke, Pedersen, Igel. Nearest Neighbor Density Ratio Estimation
for Large-Scale Applications in Astronomy, Astronomy and Computing, 2015.

Beck, Lin, Ishida, Gieseke, Souza, Costa-Duarte, Hattab, Krone-Martins.
On the realistic validation of photometric redshifts, MNRAS, 2017.
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Transient Detection
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Bogus Real

Gieseke, Bloemen, Bogaard, Heskes, Kindler, Scalzo, Ribeiro, van Roestel, Groot, Yuan, Möller, Tucker.
Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys, under review, 2017.
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Transient Detection via CNNs
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Convolu�on Layer Pooling Layer Dense 
Layer

Dense 
Layer

Output 
Layer

Input Layer

Gieseke, Bloemen, Bogaard, Heskes, Kindler, Scalzo, Ribeiro, van Roestel, Groot, Yuan, Möller, Tucker.
Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys, under review, 2017.
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Transient Detection
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Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys, under review, 2017.
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Big Data

• Huge increase in data volumes!

• Today: TBs

• Tomorrow: PBs

Large-Scale Machine Learning

• More data→ better models!

• Time-consuming analysis

• Combination of many techniques

Astronomy

• Many challenging problems!

• Often: Important to use all data

• Interdisciplinary research
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