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What is “Big Data”?

“Big data is like teenage sex: everyone talks
about it, nobody really knows how to do it,
everyone thinks everyone else is doing it, so
everyone claims they are doing it...” . &l

EARTH BALL!
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KILOBYTE MEGABYTE GlGABxTE TERRB}TE PETAB;{TE
Large-Scay@flachine Learning in Yéonomy 10 10" 10"
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What is “Big Data™? TRAFFIC 20\6\
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Today: Telescopes (2000—2017)

http://www.sdss.org


http://www.sdss.org
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Tomorrow: Telescopes (2020+)

ttps://www.skatelescope .0rg
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v
o
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https://www.skatelescope.org
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Astronomy and Machine Learning?

2015 — SDSS 2024 — EELT 2021 — LSST 2025 — SKA
(in total: 100TB) (per night: 2TB) (per night: 30TB) (per hour: 10PB)
Challenges

Find interesting objects such as distant galaxies or very rare stars! Combine various data sources! Handle
billions of objects per night — Process and analyze all the data efficiently and at low cost!

"] t A. 1, ‘§
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4y my 14 H
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B B galaxies o ! !
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wavelength [nm]

Large-Scale Machine Learning in Astronomy
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Machine Learning Workflow

.
PR
L)

Y UNDERSTAND

Which problem do you wanna solve?

MONITOR COLLECT

Monitor performance over time. Get relevant data!

DEPLOY MERGE & CLEAN

Apply model to new, incoming data! Clean/merge data (multiple sources).

VALIDATE EXPLORE

What is the best model (training data)? Visualize the data. Are there outliers?

0
G,
DR MODEL
.

e, ‘.' Select models, train models ...

.

Large-Scale Machine Learning in Astronomy
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MONITOR

Monitor performance over time.

Apply model to new, incoming data!

VALIDATE

Machlne Learning Workflo

UNDERSTAND

Which problem do you wanna solve?

COLLECT

Get relevant data!

FIERGE & CLEAN

Clean/merge data (multiple sources).

EXPLORE

What is the best model (training data)? Visualize the data. Are there outliers?

*

“am o
" | Learning in Astronomy

Slide 8/42
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Select models, train models ...
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_Machine Learning Workflows,

A UNDERSTAND

Which problem do you wanna solve?

MONITOR COLLECT

Monitor performance over time. Get relevant data!

YL MERGE & CLEAN

Apply model to new, incoming data! Clean/merge data (multiple sources).

. .
LI A

VALIDATE EXPLORE

What is the best model (training data)? Visualize the data. Are there outliers?

Select models, train models ...

" | Learning in Astronomy
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A Simple Task (?)

H B galaxies
241 A A stars
22t
A
- 201
8
2 B =
=3
18}
16}
14}
0 2 4 6 8

psfMag_g - modelMag_i
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A Simple Task (?)

galaxies
A A stars

psfMag_r
N
o

=
@

4
psfMag_g - modelMag_i

2
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Example: Nearest Neighbor Classification

k=1 k=5

The k-nearest neighbor classification algorithm

Require: Let T = {(x1,1),...,(Xn,¥n)} CR? x {1,...,C} be the set of training
examples and k be the number of nearest neighbors.

1: for each test example x do

2:  Compute the distance D(x,X;) to each training example X;.

3:  Select Nx C T, the set of the k closest training examples to x.

4 f(x) = argmax, Z(x,»,y,»)eNx I(c=yi)

5: end for
Large-Scale Machine Learning in Astronomy Can you deal high-dimensional data?
Stoe 14z Can you handle millions of training/test points?
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Example: Support Vector Machines

maximize i Bi— % i i BiBjyiy;(xi, x;)

Belo.Cl" = i=1j=1

n
s.t. ivi=20 1
,-;’ by minimize —x"'Qx +¢'x
xeR" 2
st.Gx<g

B Q=Koyy' eR™ andc=(-1,...,—1)T €R" Ax=a

G- ( |I> with1 € R"" and g = (0,...,0,C,...,C)T € R?"
A=y ' cR™anda=0¢cR'

Here, ® denotes the elementwise product,
y=(1,...,ya)" €R" and kernel
matrix K € R™" with K;; = (x;,X;).

Large-Scale Machine Learning in Astronomy Solving such a quadratic program generally takes O(n®) time ...
Slide 12/42
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More Classifiers!

Nearest Neighbors Linear SVM RBF SVM AdaBoost

Naive Bayes

Large-Scale Machine Learning in Astronomy
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Example: Nearest Neighbor Regression

H

The k-nearest neighbor regression algorithm

Require: Let T = {(x1,%1),...,(Xn,¥n)} C R x R be the set of training examples and
k be the number of nearest neighbors.

1: for each test example x do

2:  Compute the distance D(x,X;) to each training example x;.

3:  Select Nx C T, the set of the k closest training examples to x.
4 f(x)= 1} Z(x,-,y,-)eN, Yi

5: end for

Large-Scale Machine Learning in Astronomy
Slide 14/42
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Example: Regularized Least-Squares

A = small A =large A = middle
Models

Let T = {(x1,1),---,(Xn,¥n)} C R x R be the set of training examples, X € R"*d
containing the patterns x; as rows, and A > 0. Goal: Find a model f € # in a hypothesis
space H that minimizes

n
A 2 2
minimize f(x))—yi)+  Al|f 1
i ’;((,) ¥i) £l (1)
N—— —— Small Complexity
Small Loss

Here: Models of the form f(x) = Y.y ¢;K(x;,x), where ¢ € R” and K : R x RY — R is
a so-called kernel (many machine learning techniques are based on this formulation!).

Large-Scale Machine Learning in Astronomy
Slide 15/42
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Example: Regularized Least-Squares

A = small A =large A = middle
Computational Complexities

Training: One can compute optimal coefficients in O(n®) operations. In addition,
one needs to compute the kernel matrix beforehand (typically O(-n?) time and
space).

Testing: Once the coefficients ¢* have been computed, one can apply the model f
to new x € RY via f(x) = Y1 ¢iK(x;,x). This takes O(n) time per instance!
Space Reduction & Speed-Ups: We need O(n?) space to store K. Various ways exist to reduce the
runtime/space consumption. A prominent one is to approximate the kernel matrix (e.g., via

K= K,E,(Kpm)’1 K € R™" with R rows/columns being randomly selected).

Large-Scale Machine Learning in Astronomy Can you train a model for one million training instances?
St 16142 Can you deal with one billion test points?
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Example: Unsupervised Learning

amplitude

-4 =2
flux_mid80

Ouitlier Detection

“I have 50 million objects and each of them is described via 20 values (features). Can you find the

outliers for me, i.e., objects that are somehow different from the other ones?”

Large-Scale Machine Learning in Astronomy Joint work with Ashish Mahabal
Slide 17/42
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Machine Learning: Many Problems+Techniques!

scikit-learn
algorithm cheat-sheet

classification

few features
should be
important

o1
WORKING

dimensionality
reduction

http://scikit-learn.org/stable/tutorial/machine_learning_map/
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Why Big Data?

Nearest Neighbors Linear SVM RBF SVM Decision Tree Random Forest AdaBoost Naive Bayes

° .
A

Large-Scale Machine Learning in Astronomy
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Why Big Data?
Nearest Neighbors Linear SVM RBF SVM Decision Tree Random Forest AdaBoost Naive Bayes

Linear SVM

Large-Scale Machine Learning in Astronomy
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Why Big Data?

Nearest Neighbors Linear SVM AdaBoost Naive Bayes

RBF SVM Decision Tree Random Forest

RBF SVM

Large-Scale Machine Learning

Interface: Machine Learning + Data Structures + Optimization + HPC + ...
(often depends on the particular application domain!)

Key Question: How can we analyze all the data efficiently and at low cost?
“Often, it is not the best algorithm that wins,

but the one that has the most data!”
[Andrew Ng]

Large-Scale Machine Learning in Astronomy
Slide 19/42



Big Computers

Large-Scale Machine Learning in AstronomyC C0'S 1ting-res titan-cray-xk7/
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https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
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Big Computers

Rank Site

1 National Sup
Center in Wux
China

omputing

2 National Super Com
Center in Guangzhou

China

3 DOE/SC/Oak Ridge
National Laberatory
United States

4 DOE/NNSA/LLNL
United States

5  DOE/SC/LBNL/NERSC
United States.

6 Joint Center for
High Performange
Computing
Japan

7 RIKEN Adv
for Computa
(AICS
Japan

8 Swi
Supercomputing Centre
[cscs)

Switzerland

National

9 DOE/S!
Laboratory
United States

/Argonne N

ationa

10 DOE/NNSA/LANL/S
United States
Large-Scale Machine Learning in Astronomy
Slide 20/42

System
Sunway TaihuLight - Sunway MPP,
Sunway SW26010 260C 1.45GHz, Sunway

NRCPC

Tianhe-2 (MitkyWay-2) - TH-IVB-FEP

con E5-269

ress-2, Intel

XK7 , Opteran 6274 16C
mini interconne:

NVIDIA K20x
CrayInc.

Sequoia - BlueGene/Q,

, Power

160 GHz, Custom
1BM
Cori - Cray XC40, Inte

1.46Hz, Aries interconnect
Cray Inc.

Oakforest-PACS - PRIMERGY 0
M1, Intel Xeon Phi 7250 68C 1 4GHz, Intel
Omni-Path
Fujitsu

omput

terconnect
Fujitsu

Piz Daint - Cray XC50, Xeon E5-2690v3
12C 2.6GHz, Aries intercon NVIDIA

Tesla P100
CrayInc.

Mira - BlueGene/Q, Powe
1.606Hz, Custom

1BM
Trinity - Cray XC40, Xeon ES
23GHz, Aries interconnect
Cray Inc.

Cores

10,649,600

3,120,000

560,640

1,572,864

622,336

556,104

705,024

206,720

786,432

301,056

93,014.6

33.862.7

17,590.0

17,173.2

14,014.7

13.554.6

10,510.0

9.779.0

8,586.6

8,100.9

Rmax  Rpeak
(TFlop/s)  (TFlop/s)

125,435.9

54,902.4

27,1125

20132.7

27.880.7

249135

11,2804,

15,988.0

10,0663

11,0789

Power
(kw)

15,371

17,808

8,209

7890
3,939

2719

12,660

1,312

3,945

4,233

http://www.top500.0rg
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Massively-Parallel Programming?

g "
WPV
(\?\"‘;0@1 PO

CPU GPU
/N (MULTI-CORED (mm{v-conz)

THOUSANDS!

Graphics Processing Units (GPUs)

Can nowadays also be used for general computations and are well-suited for
massively-parallel programming. Example: Adding two vectors x,y € R10000

CPU: Computes x1 + y1, X2 + yo, ... (sequentially)
GPU: Core i computes x; + y; (in parallel)

Slide 21/42
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Massively-Parallel Programming? .
LE"
GNPV
(\N’N ;‘(\P\s*s .

(r’lL)LTl CORE) (r’IANV CORE)
2 THDDSANDS

Graphics Processing Units (GPUs)

Can nowadays also be used for general computations and are well-suited for
massively-parallel programming. Example: Adding two vectors x,y € R10000

CPU: Computes x1 + y1, X2 + yo, ... (sequentially)
GPU: Core i computes X; + yi (in parallel)

Side 21/42
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Example I: Semi-Supervised SVMs

HARD OPTIMIZATION PROBLEM

o 1 ) ) I . u
minimize —||lw||*+C +C 9
L), Slwl i;ﬁ, i;ﬁl
wedH, beR, &' eR/, EeRY

st yi((w,®(x;)) +b) > 18}, & >0,

and yi((w, ®(x/4))+b) =18, & >0

Large-Scale Machine Learning in Astronomy
Slide 22/42



Example I: Semi-Supervised SVMs

14 14

e
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2
0 0 0.5 l 1.5 2 U-3 2 2 3

Quasi-Newton Framework (Simplified)

Initialize matrices
for i=1totdo

1:

2:

3:

4 e

5 while termination criteria not fulfilled do
6: Compute Fg,(c;) and VFy,(c))
7:

8

9:

10:

end while
end for

Large-Scale Machine Learning in Astronomy
Slide 23/42



Example I: Semi-Supervised SVMs

14 14
1.2 1.2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0 0.5 l 1.5 2 U-3 2

Quasi-Newton Framework (Simplified)

. Initialize matrices
: fori=1totdo

1

2

3

4 e

5 while termination criteria not fulfilled do
6: Compute Fy,(c;) and VFg,(c))
7:

8

9

0

end while
10: end for

Large-Scale Machine Learning in Astronomy
Slide 23/42



Example |: Speed-Up

350 . . ! 100
300 || cpu-qn-s3vm —e— 1 90
gpu-qn-s3vm —a— 80
Okl e — 0 .
9200 e 98 —;1
5
£ 100 30 *
20
50 10
0 i)
10000 20000 30000 40000

n

Figure 3: Runtime comparison between the CPU implementation and its GPU variant
given the epsilon data set (A = 1).

Large-Scale Machine Learring in Astronomy Intel i7@4.00GHz (1 core used)
Sido2us2 GeForce Titan Z (1 device, 2880 cores, 6GB RAM)



Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Large-Scale Machine Learning in Astronomy
Slide 25/42



UNIVERSITY OF COPENHAGEN

Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees
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Example II: Buffer k-d Trees

Even with k-d trees, it can easily take hours or even days. This
is not gonna be fast enough for future datasets/tasks!

Large-Scale Machine Learning in Astronomy
Slide 27/42
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Example II: Buffer k-d Trees

Buffer k-d Trees (Sketch)

Top tree: First levels of a standard k-d tree
(i.e., its median values), laid out in memory
in a pointer-less manner.

Leaf structure: Training patterns, sorted
in-place during the construction of the top
tree (w.r.t. the median values). Each block of
the leaf structure corresponds to a leaf of the
top tree.

Buffers: One buffer for each leaf of the top
tree; each buffer can store a predefined
number B of query indices.

Queues input and reinsert: Two (first-
in-first-out) queues of size m.

Large-Scale Machine Learning in Astronomy
Slide 28/42

input reinsert

v

top tree

buffers
YooYy Vv v

PROCESSALLBUFFERS

IR I

Key Idea: Reorganize tree traversal and use GPU for compute-intensive parts!




Example |I: Buffer K-D Trees

Intel i7@3.40GHz (4 cores, 8 hard. threads), GeForce GTX 770 (1536 cores, 4GB RAM)

psf_colors psf_mag psf_model_mag all mag all_colors all
(d=4) (d=5) (d =10) (d =15) (d=12) (d=27)
kdtree (cpu) 71 (x 5) 57 (x 5) 527 (x15) 4616 (x22) 16394 (x34) -
bufferkdtree (gpu) 14 12 36 210 478 1717

Table 1: Runtime comparison in seconds (speed-up in brackets)

Fabian Gieseke, Cosmin E. Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger
Buffer k-d Trees on Multi-Many-Core Systems, BDL, 2016.

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d Trees:
Processing Massive Nearest Neighbor Queries on GPUs, ICML, 2014.

Large-Scale Machine Learning in Astronomy
Slide 29/42



UNIVERSITY OF COPENHAGEN

Example II: Buffer K-D Trees

Intel i7@3.40GHz (4 cores, 8 hard. threads), GeForce GTX 770 (1536 cores, 4GB RAM)

psf_colors psf_mag psf_model_mag all mag all_colors all
(d=4) (d=5) (d=10) (d =15) (d=12) (d=27)
kdtree (cpu) 71 (x 5) 57 (x 5) 527 (x15) 4616 (x22) 16394 (x34) -
bufferkdtree (gpu) 14 12 36 210 478 1717

Table 1: Runtime comparison in seconds (speed-up in brackets)

amplitude

0

a =
flux_mid80
Fabian Gieseke, Cosmin E. Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger
Buffer k-d Trees on Multi-Many-Core Systems, BDL, 2016.

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d Trees:
Processing Massive Nearest Neighbor Queries on GPUs, ICML, 2014.

Large-Scale Machine Learning in Astronomy
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Example IIl: Deep Learning

https://www.nvidia.com/en-us/deep-learning-ai

NVIDIA.

DEEP LEARNING Al WHAT'SNEW  INDUSTRIES w  DEVELOPER ~ SOLUTIONS ~ EDUCATION Al STARTUPS

EVERY INDUSTRY IS
AWAKENING TO Al

Deep learning is already being used in the automotive
industry, healthcare, and many more.

Preventing disease. Building smart cities. Re tionizing analytics. These are just a few things
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Example IV: Distributed Computing

A
I

"

1 l l ] UL
“n | ' A ' 1 IRV !
1 inwiiin g ikdn u LI o I m ‘m.n‘
m JIAmAT A mn.l. '.m inndi T NI
[T mmmmnn Il I ' AU 10 A it i T T
v 1‘ Iy i I mn. 11 u\v,nmﬂ AT [ 1]
by | .’ i §iiiy 1 1 1‘ mun“ T [
i I mn I [ il nmm .m I ZINARLL ] 1
Iy ‘n’x i i 1| " it m i m 1 TG 1 11
] m mm il . i uwuuu t T i ,r f o ITINTIT T T 1
[IIAN ‘l el 11 100 Al il T 1 110 1
." x"I‘“ L 'lm ‘ ‘ it i ity i ‘
ul 1 [l I | !
1 ] |. 111 I
it v “M Key Ideas -
LU | L4 |
I ! ‘h’%m‘“ Store data on many computers (Hadoop/Spark).
Nl . .
LAl w‘i‘ Bring computations to the data!
L4 Derive efficient distributed approaches ...

Example: Random forests for billions of training instances (tricky!)

Large-Scale Machine Learning in Astronomy
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® Applications in Astronomy

Large-Scale Machine Learning in Astronomy
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Photometric k-NN Regression — Quasars

s y/

X, € Nk
900
6.0 800
5.0 700
34.0 f_iUO
3 500
330 400
) 2.0 300
3 200
10 : 100

: 0
0000 1.0 2.0 30 40 aO 60
Zspectroscopic

Nearest Neighbor Regression

Polsterer, Zinn, Gieseke. Finding New High-Redshift Quasars

Large-Scale Machine Learning in Astronomy

Slide 33/42 by Asking the Neighbours, MNRAS, 2013.
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Photometric k-NN Regression — SSFR

f(x)

Dy

X,ENk

log(sSFR), spectroscopic

" [RMSE =00 0002

L L
-14 =13 <12 -11 -10 -9

-8 -7
log(sSFR), prediction

log(sSFR), spectroscopic

}’1
-7, — - 140
RMSE =0.36-£001
. 81
-8
a7
-9 {
27
-10 16
1 9
5
-12
) 3
-3t 2
e . 1
“14 -13 -12 -11 -10 -0 -8 -7
log(sSFR), prediction

Large-Scale Machine Learning in Astronomy

Slide 34/42

Nearest Neighbor Regression

Physical Model

Stensbo-Smidt, Gieseke, Zirm, Pedersen, Igel. Sacrificing information for the

greater good: how to select photometric bands for optimal accuracy, MNRAS, 2017.
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Special Problem: Sample Selection Bias

J L / “,: 4
3000 4000 5000 6000 7000 8000 9000
Wavelength (A)

J

Photometric Target Selection

e Training data: All photometric objects with spectra
e Test data: All photometric objects!

Spectroscopic follow-up observations are made of potentially interesting objects.
This leads to a heavy sample selection bias!

Large-Scale Machine Learning in Astronomy
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Special Problem: Sample Selection Bias

J L / “,: 4
3000 4000 5000 6000 7000 8000 9000
Wavelength (A)

J

Photometric Target Selection

e Training data: All photometric objects with spectra
e Test data: All photometric objects!

Spectroscopic follow-up observations are made of potentially interesting objects.
This leads to a heavy sample selection bias!

What can we say about the true performance of a model?

Large-Scale Machine Learning in Astronomy
Slide 35/42
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Sample Selection Bias?

12000 psfMag_u 12000 psfMag_g 12000 psfMag_r 12000 psfMag_i 000 psfMag_z
Il Spec. conf. Il Spec. conf. Il Spec. conf. Il Spec. conf. 000 Il Spec. conf.
10000} = All 4000 - | All 4000 | | All 000 | | All = Al
000
8000 000 - 000 000 000
000
6000 000 - 000 000
4000
4000 000 - 000 000 000
000
2000 000 - 000 000
000

0, 0, 0, 0, 0,
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
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Adaptation of Regression Models

s..’“.‘_
A = small A = large A = middle
minimize - Y L0y, f(x) + B)+ [
nimize — i i
feH,beR N = Y I ——
Not too complex

Small loss on training data

Kremer, Gieseke, Pedersen, Igel. Nearest Neighbor Density Ratio Estimation
for Large-Scale Applications in Astronomy, Astronomy and Computing, 2015.
Beck, Lin, Ishida, Gieseke, Souza, Costa-Duarte, Hattab, Krone-Martins.

On the realistic validation of photometric redshifts, MNRAS, 2017.
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Adaptation of Regression Models

A = small A = large A = middle

1 n
minimize — Y BiL(y;, f(x;)+b)+  Al|f|?
fes, beR n,;B' (vis7(xi) +b) lﬂ/
Not too complex

Small loss on test data

e Introduce reweighting coefficients B1,...,B, € R

. . Phest (X;
e Estimate: §; = #((xli))

Kremer, Gieseke, Pedersen, Igel. Nearest Neighbor Density Ratio Estimation

for Large-Scale Applications in Astronomy, Astronomy and Computing, 2015.

Beck, Lin, Ishida, Gieseke, Souza, Costa-Duarte, Hattab, Krone-Martins.

e e, Mechine Learming n Astonomy On the realistic validation of photometric redshifts, MNRAS, 2017.
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Transient Detection
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Gieseke, Bloemen, Bogaard, Heskes, Kindler, Scalzo, Ribeiro, van Roestel, Groot, Yuan, Méller, Tucker.
Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys, under review, 2017.
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Transient Detection via CNNs

Convolution Layer Pooling Layer

Input Layer

Layer Layer

Layer

Gieseke, Bloemen, Bogaard, Heskes, Kindler, Scalzo, Ribeiro, van Roestel, Groot, Yuan, Méller, Tucker.
Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys, under review, 2017.
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Transient Detection
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Gieseke, Bloemen, Bogaard, Heskes, Kindler, Scalzo, Ribeiro, van Roestel, Groot, Yuan, Méller, Tucker.
Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys, under review, 2017.

Large-Scale Machine Learning in Astronomy
Slide 40/42



Outline

® Summary & Outlook

Large-Scale Machine Learning in Astronomy
Slide 41/42



PENHAGEN

Big Data

Large-Scale Machine Learning

=77

® Huge increase in data volumes!
® Today: TBs
® Tomorrow: PBs

® More data — better models! ® Many challenging problems!

® Time-consuming analysis ® Often: Important to use all data

® Combination of many techniques | | ® Interdisciplinary research
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Large-Scale Machine Learning
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Big Data Large-Scale Machine Learning
® Huge increase in data volumes! ® More data — better models! ® Many challenging problems!
® Today: TBs ® Time-consuming analysis ® Often: Important to use all data
® Tomorrow: PBs ® Combination of many techniques ® |nterdisciplinary research
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