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Why	are	we	here	today?		

©	2009	Herb	SuYer	

•  The	7	“fat”	years	of	frequency	
scaling:	
–  The	Pen^um	Pro	in	
1996:	150	MHz	(12W)	

–  The	Pen^um	4	in	2003:	
3.8	GHz	(~25x)	(115W)	

•  Since	then	
–  Core	2	systems:	

•  ~3	GHz	
•  Mul^-core	

•  Recent	CERN	purchase:	
–  Intel	Xeon	E5-2630	v3	

•  “only”	2.40	GHz	(85W)	
•  8	core	
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Memory	Latency	
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Simple,	but	illustra^ve	example	
•  KNL	has	~64	cores	@1.30GHz,	2FMA	port	
(VPU)	each,	4-way	hardware	threading,	
hardware	vectors	of	size	8	(Double	Precision),	
16GB	of	fast	memory:	

•  3TFLOPS	DP	for	400GB/s	=	0.5bit/flop-sp	
– 60	fp-ops	=	1	fp-load	
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Streaming	Mul^processor	Architecture	

NVIDIA		Pascal	
32	CUDA	core	
x4	x5	x4	=	2560	
Floa^ng	Point	Units	
@1.7GHz	
8GB	fast	memory	

credit	AnandTech	

Require	110	fp-ops	
to	compensate		
one	memory	access!	
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Conclusions	

•  Improving	throughput	or	latency	requires	
exploi^ng	op^mal	massive	paralleliza^on	at	all	
levels	

•  Speeding	up	algorithms	will	not	pay	up	if	
memory	access	is	not	reduced		
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Bunch Crossing! 4 107 Hz

7x1012 eV ! Beam Energy
1034 cm-2 s-1 ! Luminosity
2835 ! Bunches/Beam 
1011 ! Protons/Bunch

7 TeV Proton Proton 
colliding beams 

Proton Collisions! 109 Hz

Parton Collisions 

New Particle Production ! 10-5  Hz 
(Higgs, SUSY, ....)!
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Collisions	at	the	LHC:	summary	
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Detector	“onion”	structure	
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MUON BARREL

CALORIMETERS 

Silicon Microstrips
Pixels 

The image cannot be displayed. Your 
computer may not have enough memory 
to open the image, or the image may have 
been corrupted. Restart your computer, 
and then open the file again. If the red x 
still appears, you may have to delete the 
image and then insert it again.

ECAL Scintillating PbWO4 

Crystals 

 Cathode Strip Chambers (CSC)
Resistive Plate Chambers (RPC)

Drift Tube 
Chambers (DT) 

Resistive Plate 
Chambers (RPC)

The image cannot be displayed. Your computer may not 
have enough memory to open the image, or the image 
may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you 
may have to delete the image and then insert it again.

The image cannot be displayed. Your 
computer may not have enough 
memory to open the image, or the 
image may have been corrupted. 
Restart your computer, and then open 
the file again. If the red x still appears, 
you may have to delete the image and 
then insert it again.

SUPERCONDUCTING 
COIL

IRON YOKE

TRACKERs
MUON 

ENDCAPS

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

HCAL Plastic scintillator 
copper 

 sandwich

The image cannot be displayed. Your computer may not have enough memory to open the 
image, or the image may have been corrupted. Restart your computer, and then open the file 
again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your 
computer may not have enough 
memory to open the image, or the 
image may have been corrupted. 
Restart your computer, and then open 
the file again. If the red x still appears, 
you may have to delete the image and 
then insert it again.

An	experiment:	CMS	

~66M	channels	
~9M	channels	

~250K	channels	 ~250K	channels	

~100K	channels	
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Data Flow 
LEVEL-1 Trigger 
Hardwired processors  (ASIC, FPGA)  
  Pipelined massive parallel 

HIGH LEVEL Triggers 
  Farms of 

processors

10-9 10-6 10-3 10-0 103

25ns 3µs hour yearms

Reconstruction&ANALYSIS 
TIER0/1/2 

Centers

ON-line OFF-line

sec

Giga Tera Petabit

Input	rate:	40MHz	
Latency	<3-8	μs	
Datasize	<5-50KB	
Select	<	one	in	thousand	
~50	“topological”	categories	

Input	rate	10-50KHz		
Latency	~seconds	
Datasize	<100KB-2MB	
Select		~one	in	hundred	
~500	“physics”	categories	

Input	rate	100-1000Hz	
Latency		
			few	hours	for	Data	quality	feedback	
			years	for	final	publica^on	
Datasize	2MB	
Physics	driven	classifica^on	

Natural	Parallelism	allows	
for	a	throughput	oriented	
architecture.	
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Toward	2023	
•  High	Luminosity:	proton	collisions	per	bunch-crossing	(PU)	40	->	200	

–  	x5	more	occupancy	in	detectors	
–  Access	to	new	corners	of	phase-space	

•  High	Mass,	Boosted	topologies	
–  Dense	environment 		

•  New	Detectors	
–  New	Tracker	

•  Higher	granularity	(x4),	extended	coverage,	hardware	trigger	capability	
–  CMS:	New	High	granularity	Calorimeter	
–  Timing	informa^on	

•  First	Level	Trigger	
–  Include	Tracking	informa^on	
–  Output	Rate	up	to	1MHz	

•  High	Level	Trigger	
–  More	use	of	tracking	
–  Detailed	analysis	in	search	of	new	signals	
–  Output	Rate	up	to	10KHz	

•  Offline	
–  Not	just	do	as	well	as	today	but	at	PU	200	
–  More	precision	to	look	for	<ny	signals	of	New	Physics	
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Data	Hierarchy:	Our	solu^on	to	BigData	
“RAW,	ESD,	AOD,	TAG”	

RAW	 Detector digitisation ~2 MB/event 
~9MB with Sim 

~80MB at PU200 

ESD/RECO	 Pseudo-physical information: 
Hits, Clusters, track candidates  

~100 kB/event 
~2MB with Sim 
~23MB at PU200 

(mini)AOD	

Physical information: 
Transverse momentum,  
Association of particles, jets,  
(best) id of particles, 

~10 kB/event 
<1kB prune/compress  

TAG/tuple	~1 kB/event 
Relevant information  
for “fast” event selection 

Triggered	events	
recorded	by	DAQ	

Reconstructed		
informa^on	

Analysis		
informa^on	

Classifica^on		
informa^on	
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Hits	associated	to	found	tracks	only.	
At	least	as	many	pre-filtered	or	not	associated	
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Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process?

à  multi-process and multi-thread 
applications are now in production

à   CMS simulation and reconstruction 
runs on KNL with 126 threads well 
within the16GB of fast memory

à I/O remains a problem...

Event parallelism

							Sverre	Jarp	2007	
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Beyond		
event-level	parallelism	

– Why?	
»  We	may	endup	with	more	core	than	events	
»  Resources	(shared	access	to	memory,	to	disk)	may	be	scarce	

•  Typical	example	is	a	KNL	used	as	a	cluster	of	~256	cpus	

–  Parallelize	a	DAG	workflow	is	rela^vely	easy	including	the	
management	of	a	mild	overcommit	to	mi^gate	starva^on	issues	

»  All	concurrent	framework	implements	it	(or	plan	to	implement	it)	
»  To	work	well	it	requires	a	reasonably	balanced	workflow:		

•  a	single	long	pipeline	may	easily	defeat	its	purpose!	

»  Itera^ve	tracking	is	the	most	striking	example	of	long	pipeline	(50%	of	
reco	^me	spent	in	it	for	CMS…)	

–  NB:	up	to	this	point	data-processing	is	fully	reproducible	
independently	of	the	order	of	execu^on	and	granularity	of	
concurrency		
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Outer	loop	paralleliza^on	
•  Typically	each	processing	module	has	an	“outer	loop”	on	its	

input	collec^on	
–  The	most	trivial	concurrency	model	is	to	parallelize	it	

•  “For	loop”	paralleliza^on	is	a	well	established	prac^ce	
•  In	CMS	proven	to	work	“almost”	out	of	the	box	for	both	

seed	and	track	building	
–  Seed	building	is	fully	combinatorial,	no	reproducibility	issues	
–  Track	building	includes	“cleaning	passes”	to	remove	already	
used	hits		

•  Introduces	a	sequen^al	dependency	and	therefore	an	irreproducibility	
in	case	of	parallel	processing	

•  Current	implementa^on	
–  Avoid	“cleaning”	and	pay	the	price	
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In-Out	paralleliza^on	
•  Out-In	paralleliza^on	will	allow	to	overcome	the	limita^on	of	tradi^onal	batch	

processing,	exploi^ng	new	(heterogeneous)	concurrent	hardware	(SIMD/SIMT)	will	
require	a	completely	new	approach,	most	probably	a	full	rethinking	of	algorithms,	
data	structures	and	even	of	the	workflow	decomposi^on	

•  By	defini^on	SIMD/SIMT	applies	to	the	innermost	loop	
–  Either	directly	or	by	code	transforma^on	

•  w/r/t	mul^-threading,	effec^ve	concurrency	is	“broken”	in	SIMD/SIMT	by	preYy	
common	paYerns	such	as	

–  Branch	predica^on	
–  Random	memory	access	
–  Recursion	

•  	SIMD/SIMT	algorithms	are	fragile	
–  Suppor^ng	a	new	use	case	(even	adding	some	protec^ons	or	a	minor	variant)	may	destroy	

efficient	parallelism	
–  Ozen	beYer	to	duplicate	code	and/or	to	par^^on	data	and	manage	condi^onals	at	a	higher	level	

(which	is	not	necessarily	a	bad	thing	even	in	general!)	
–  Run^me	polymorphism	is	out-of-ques^on:	has	to	be	managed	outside.	

•  Mi^ga^on	strategies	do	exist,	s^ll	for	a	full	efficient	use	of	these	architectures	a	
dedicated,	specialized	sozware	effort	is	required	

–  Think	parallel	
–  Think	local	
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Making	the	code	SIMD/SIMT	friendly	

•  Several	“success	stories”	in	CMS:	paYern	very	similar	
–  Transform	storage	representa^on	in	algorithm	specific	data	

•  SOA	to	AOS,	variable	transforma^on,	sor^ng,	filtering,	re-indexing	etc	
–  Move	all	constant	components	outside	
–  Devirtualize,	Use	explicit	RTTI,	inline	

•  Move	from	generic	to	specific	
•  Limit	the	number	of	use-cases	to	the	few	known	

–  Make	func^ons	to	act	on	collec^ons	not	on	single	objects		
•  The	net	effect	is	a	significant	speed	up	just	from	such	code	

transforma^on	
–  In	many	cases	vectoriza^on	itself	adds	liYle	

•  Short	inner	loops	
•  LiYle	computa^ons	
•  Branch	predica^on	
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Tradi^onal	track	building	
1.  Build doublets 
2.  “Propagate” doublets to third layer and search for 

compatible hits (open search window on target layer) 
3.  Propagate 1-2-3 triplet to 4th layer and search for 

compatible hits 

Highly	divergent	code,	op^mized	to	bail	out	asap.	
Easy	to	parallelize	“Outermost	Loop”,	amost	impossible	to	vectorize	
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Cellular	Automaton	(CA)	
•  The	CA	is	a	track	seeding	algorithm	designed	for	parallel	architectures	
•  It	requires	a	list	of	layers	and	their	pairings	

–  A	graph	of	all	the	possible	connec^ons	between	layers	is	created	
–  Doublets	aka	Cells	are	created	for	each	pair	of	layers	(compa^ble	with	a	

region	hypothesis)	
•  Doublet	building	iden^cal	to	tradi^onal	approach	

–  “Connect”	cells	that	share	hit	
–  Fast	computa^on	of	the	compa^bility	between	two	connected	cells	

•  Vectorized	loop	of	floa^ng	point	opera^ons	
–  No	knowledge	of	the	world	outside	adjacent	neighboring	cells	required,	

making	it	easy	to	parallelize	
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Current	Performance	
•  Plan	to	use	Cellular	Automaton	in	its	sequen^al	

implementa^on	at	the	HLT	already	in	2017	

	
On	GPU	CA	is	Memory-Bandwidth	limited	
(on	CPU	as	well…)	
	
•  Hardware:	Intel	Core	i7-4771@3.5GHz	,	NVIDIA	GTX	1080	

Algorithm	 <me	per	event	
[ms]	

Tradi^onal	Triplets	 29	
Tradi^onal	Quadruplets	 72	
CPU	Cellular	Automaton	 14	
GPU	Cellular	Automaton	 1.2	
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The	dream	of	every	experimental	
HEP	Physicist:	
Iden^fy	and	measure	each	single	
par^cle	produced	in	a	collision	
	
This	may	need	high	resolu^on	
calorimetry	that	will	compete	with	
trackers	in	complexity	and	data	
volume		
	
S^ll,	using	current	data-processing	
approach,	most	of	this	informa^on	
will	reach	the	physicists	only	in	a	
very	condensed	form	
	
Difficult	to	es^mate	the	real	impact	
of	such	a	detector	on	physics	
analysis	w/o	a	new	data-processing	
paradigm		
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Big	Ques^on	

•  Can	a	“new”	Paradigm	make	the	difference?	
– Ar^ficial	Intelligence	

•  Used	already	for	classifica^on	
– Dedicated	Specialized	Hardware	

•  In	use	in	First	Level	Trigger	since	ever	
–  CMS	Track	trigger	demonstrated	with	latency	<	4us	

– Smart	data	mining	
•  Analysis	currently	limited	to	a	single	data-^er	level	
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CMS	simula^on	&	data	processing	
Sozware	“Legacy”	

•  ~10k	“modules”	
•  ~1000	“data	processing”	modules	
•  Code	(SLOC)	

–  C++:	3,558,032	(68.86%)	
–  python:	1,240,801	(24.02%)	

•  Used	only	in	ini^aliza^on	
–  fortran:	277,857	(5.38%)	

•  Interface	to	physics	simula^on	code	

•  Total	size	of	TEXT	sec^ons	:	229,246,680	bytes	
–  	+	~220MB	of	“external	sozware”	
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Conclusions	
•  Free	lunch	is	over	

–  To	improve	the	efficiency	of	sozware	we	need	to	increase	the	granularity	
of	parallelism,	op^mize	data	access	paYerns	and	make	use	of	
heterogeneous	resources	

•  Wai^ng	for	the	defini^ve	standard	to	emerge	we	need	to	develop	our	
own	infrastructure	to	support	the	implementa^on	of	concurrent	
algorithms	able	to	exploit	parallelism	on	heterogeneous	hardware	

•  Recent	work	shows	that	
–  An	efficient	concurrent	schedule	of	algorithms	is	feasible	
–  With	huge	effort	it	is	possible	to	make	current	algorithm	

implementa^ons		free	from	data-race	(thread	safe)	
–  Making	use	of	parallelism	in	algorithms	requires	a	total	re-

implementa^on	
•  More	R&D	is	required	to	tackle	the	challenges	of	

–  Exploi^ng	heterogeneity	
–  Efficient	parallelize	algorithms	
–  Efficient	u^liza^on	of	memory	hierarchy	
–  Efficient	u^liza^on	of	the	few	developers	lez	
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BACKUP	
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The	real	issue:	maximize	throughput	
Theore<cal	peak	throughput:	the	maximum	amount	
of	data	that	a	kernel	can	read	and	produce	in	the	unit	
^me.		

	
Throughputpeak (GB/s) = 2 x access width (byte) x mem_freq (GHz)  

	

This means that if  your device comes with a memory 
clock rate of  3GHz DDR (double data rate) and a 
384-bit wide memory interface, the amount of  data 
that a kernel can process and produce in the unit time 
is at most: 

Throughputpeak (GB/s) = 2 x (384/8)(byte) x 3 (GHz)  = 288 GB/s 
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Consequence:	cpu	starva^on!	

•  NVIDIA TESLA Kepler K40: 
●  1.4 TFLOPS DPFP peak throughput 
●  288 GB/s peak off-chip memory access bandwidth 

–  36 G DPFP operands per second 

●  In order to achieve peak throughput, a program 
must perform 1,400/36 = ~39 DPFP arithmetic 
operations for each operand value fetched from off-
chip memory 
●  In most of  current code is 0.5 (fetch two operands, 

never use them again)! 
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Tracking	at	CMS	
•  Particles produced in the 

collisions leave traces (hits) as 
they fly through the detector 

•  The innermost detector of  CMS  
is called Tracker 

•  Tracking: the art of  associate 
each hit to the particle that left it  

•  The collection of  all the hits left 
by the same particle in the 
tracker along with some 
additional information (e.g. 
momentum, charge) defines a 
track 

•  Pile-up: # of  p-p collisions per 
bunch crossing 
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Reconstruc^ng	Jet	Cons^tuents	

Tracker-Calo Link

Cluster-Track Linking

charged 
hadron

charged 
hadron

neutral hadron
from energy imbalance

electron

charged 
hadron

Resolve, Identify, Measure

CMS Particle Flow (PF)

HCAL

ECAL

Tracker

HCAL
ECAL

Tracker

Raw Detector Readout Clustering and Tracking

Illustrations: Lindsey Gray

{ 

Non	trivial	regression	to	compute	best	es^ma^on	of	par^cle	energy	
combining	all	available	informa^on	taking	into	account	non-uniformity	in	
detector	response	
Based	on	intensive,	itera^ve	sta^s^cal	analysis	of	data	themselves	to	
extract	alignment	and	calibra^on	constants	
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Actual	granularity	of	red	towers	is	~100	^mes	finer	
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HEP	Applica^ons	
Algorithms	read	and	write	
from/to	the	event-data	
store	and	the	“services”	
	
Only	interfaces	are	defined	
(with	no	“cost”	associated)		
	
Algorithms	are	in	turn	
based	on	a	large	set	of	
u^li^es	and	founda^on	
libraries	
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A	real	applica^on	(LHCb	Brunel)	
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