ey

LHCb software modernisation needs

M. Clemencic on behalf of LHCb
March 23, 2017

CERN - LHCb

Introduction

- LHCb Software designed ~15 years ago
- It copes with the current workload

- We will need something better for the future

LHCb Upgrade

Status

Run 2 (2015-2018)
LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

< O I

LO Hardware Trigger : 1 MHz
readout, high Er/Pr signatures

450 kHz 400 kHz 150 kHz
ht w/up e/y

! Software High Level Trigger

Online

Partial event reconstruction, select
displaced tracks/vertices and dimuons

Buffer events to disk, perform online
detector calibration and alignment

Full offline-like event selection, mixture
of inclusive and exclusive triggers

12.5 kHz (0.6 GB/s) to storage

“Full Stream” “Turbo Stream”

Upgrade

Run 3 (2021-2023)

LHCb Upgrade Trigger Diagram
30 MHz inelastic event rate

(full rate event bu)] 100
. SE>2 Retepy s
:Software High Level Trigger fon

[Full event reconstruction, inclusive and]

Buffer events to

Online
Offline

[Add offline precision particle identification|
and track quality information to selections
Output full event information for inclusive
triggers, trigger candidates and related|
primary vertices for exclusive triggers

\ J

. . .
2-5 GB/s to storage

“Turbo Stream”

Getting Faster

Scaling the Code

Moore vs. Moore's Law

1000 ’,1 20000
FLOPS of actual e .
Online. farm hardware - ~— Fit of average CPU FLOPS
s¥iae Since ~1970
/’/”
2000
w o
o =

200

Trigger Decisions/s actual

Online farm hardware
20

2006 2008 2010 2012 2014 2016 2018 2020

——GFLOPS -e—Moore's Law Fit —s—Moore/s
* Tests done with 2014 Farm tender benchmark
* Dates are release dates of CPU

Areas of Study

We need to improve our software:
- Multithreading
- Vectorization

i

- Accelerators WORK IN PROGRESS

Multithreading

- Multithreading in the software framework Gaudi

- intra/inter-event concurrency

- task based (TBB)

- easy thread safety via a functional model
- scheduling optimizations

- asynchronous 1/0

- Adapting LHCb applications
- migration of reconstruction in progress

Vectorization

- Investigating several possibilities
- horizontal
- vertical
- automatic
- explicit (libraries)

- Not easy for non experts

- learning best practices the hard way
- looking for ways to help developers

Accelerators

- Working on specific tasks
- demonstrate feasibility

- Not easy integration with the framework
- how to solve the latency problem?

1

Getting Better

Improving the Code

- Main code base developed on C++98 standard
- Modern C++ (> C++11) helps developers

- easier to write and understand

- faster and more correct
- Slowly migrating to new best practices

- follow C++ Core Guidelines

Quality Assurance

- We need code we can trust

- unit tests

- integration tests

- continuous integration
- static analysis

- Developers need help

- how to write testable code
- testing frameworks

14

Summary

- Addressing modernization of the code under various angles
- Some aspects require experts’ knowledge

- could it be made easier?

- Distributed computing (Grid) is still important
- can we optimize and be portable?

16

	LHCb Upgrade
	Getting Faster
	Getting Better

