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Introduction

- LHCb Software designed ~15 years ago
- It copes with the current workload

- We will need something better for the future
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Status

Run 2 (2015-2018)
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Upgrade

Run 3 (2021-2023)
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Getting Faster




Scaling the Code

Moore vs. Moore's Law
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Areas of Study

We need to improve our software:
- Multithreading
- Vectorization

i

- Accelerators WORK IN PROGRESS




Multithreading

- Multithreading in the software framework Gaudi

- intra/inter-event concurrency

- task based (TBB)

- easy thread safety via a functional model
- scheduling optimizations

- asynchronous 1/0

- Adapting LHCb applications
- migration of reconstruction in progress



Vectorization

- Investigating several possibilities
- horizontal
- vertical
- automatic
- explicit (libraries)

- Not easy for non experts

- learning best practices the hard way
- looking for ways to help developers



Accelerators

- Working on specific tasks
- demonstrate feasibility

- Not easy integration with the framework
- how to solve the latency problem?
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Getting Better




Improving the Code

- Main code base developed on C++98 standard
- Modern C++ (> C++11) helps developers

- easier to write and understand

- faster and more correct
- Slowly migrating to new best practices

- follow C++ Core Guidelines



Quality Assurance

- We need code we can trust

- unit tests

- integration tests

- continuous integration
- static analysis

- Developers need help

- how to write testable code
- testing frameworks
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Summary




- Addressing modernization of the code under various angles
- Some aspects require experts’ knowledge

- could it be made easier?

- Distributed computing (Grid) is still important
- can we optimize and be portable?
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