
Software Evolution: a view from
ATLAS

Graeme Stewart and Walter Lampl

2017-03-23
1

High Luminosity LHC

• High luminosity LHC will deliver about x10 increase in luminosity over what we have
today to ATLAS and CMS
• Needed for precision physics program and to increase the discovery reach of

ATLAS

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Run1 LS1 Run 2 LS2 Run 3 LS3 Run 4

0.75 x 1034 cm-2s-1
50ns Bunches

Pileup ~40

1.5 x 1034 cm-2s-1
25ns Bunches

Pileup ~50

2.2 x 1034 cm-2s-1
25ns Bunches

Pileup ~60

5.0 x 1034 cm-2s-1
25ns Bunches
Pileup ~200

LHC HL-LHC

2026 2027

2

The Challenge

x

Event Complexity x Rate = Computing Challenge
• Reconstruction event complexity is highly non-linear with the number of

interacting protons (we call this pileup)
• Rate increases

• 40MHz LHC interaction rate
• ATLAS trigger will reduce that rate to ~1MHz in hardware then to 10kHz

written to offline
• This is x10 more than we have today

3

ATLAS Software

• Software plays a critical role in ATLAS physics production

• Our main Athena code base is ~4M lines of C++ and ~1.5M lines of python

• This does event generation, simulation, digitisation, reconstruction

• This excludes a lot of the ‘end of chain’ analysis code (see Axel’s talk later)

4

Human Challenge
• We have a very diverse developer community

• A few super-experts who are genuine hard core C++ gurus
• A modest pool of physicist programmers who specialise in software and do write (very) good

code
• A long tail of 100s people with declining levels of experience in C++, right down to starting

graduate students who barely know how to get started
• But who will accumulate experience over time — some will become experts

• We have to have programming models and patterns that allow non-experts to contribute effectively

• We have invested a lot recently in re-tooling in ATLAS to move to a more standard open source
development model: git, GitLab, CMake

• Code review and continuous integration are now critical parts of our workflow

• Core and framework code must do the heavy lifting in areas like concurrency and vectorisation

5

Memory Crisis
• Our highest ‘wall’ right now is the memory wall

• We have ~100M detector channels, a complex geometry and complex magnetic field and we are supporting a
precision physics program

• All this is memory hungry work and we already have trouble squeezing into the memory/core limits on many of
our grid sites (generally 2GB/physical core)

• We’re throwing away 15-20% by not being able to use hyper threaded cores
• We are surviving today for LHC Run 2 by using multi-processing, AthenaMP

• Initialise large static memory structures and then fork multiple event workers
• Takes advantage of the kernel’s copy on write to share a lot of memory

• However, this technique is already sub-optimal
• It practically fails already for some workflows, e.g., Heavy Ion reprocessing
• We are not really able to use machines with memory/core < 2GB

• Many core machines or weak core systems

6

Memory
Saving

Framework Upgrade
• We have a major project now to upgrade to a multithreaded version of

our framework
• This is called AthenaMT and is based on an evolution of the Gaudi

framework that we share with LHCb
• The intention here is to have a framework which is primarily data driven

• We exploit the fact that our data processing can be broken down
• Into events that are independent
• With parallelism between reconstruction algorithms possible
• We allow for the possibility of exploiting some parallelism within

expensive algorithms
• Although we call this our multithreaded upgrade, in fact we express the

workflow as a set of tasks and use a task based scheduler that
manages the thread pool

• Currently this is Intel’s Threaded Building Blocks

7

Roughly, view each row
as a thread, each colour
as an event, each box as
an event processing step

AthenaMT: Complexity and
Early Results

• Note that our scheduling problem is highly non-trivial

• Many control flow dependencies to support early
rejection of events online

• Results from running simulation in the new
framework very much vindicate our approach

8

Xeon Phi Ztt

Software Tools
• Much of our code was written with deep assumptions about serial processing embedded in it
• A lot will have to be re-written to become compatible with the new framework

• This is a large undertaking from a community already supporting ongoing data taking and physics analysis

• Good software tools already help (but always room for improvements):
• Compilers (gcc, clang)

• Static code checkers (Covertity, cppcheck, ASAN, UBSAN, …)
• Performant libraries (MKL, Eigen)

• Areas where things feel weak:
• Performance analysis — partly hampered by the size and complexity of our code base, these require a lot of investment and

can be hard to map to code improvements

• We really struggle to understand how to improve data flow in and out of memory to best use CPU caches
• Refactoring tools — would be very useful for non-trivial API changes
• Vectorisation — we have not found a way to vectorise our code in a way that’s generally accessible to non-experts and

portable across the code base

• Our Event Data Model probably does us no favours here, but this is one of things that non-experts are very exposed to

9

Technology Outlook
• Slow death of Moore’s Law

• We will need to invest more in making the best use of the hardware that is on the market

• We are absolutely COTS and we do not drive the market in any way

• Does the hardware that will be available map well to our tasks?
• Low power, many core systems

• If not, how do we adapt to use what we can?
• Except for a few specialist areas we are very far away from being able to use GPGPUs for most ATLAS data

processing

• We need good software tools to help here
• We will never reach ‘peak’ efficiency, but which gaps are easier to bridge?

• Storage requirements are steeply rising with HL-LHC
• Disk capacities increasing, but not i/o rates, which is a very serious issue
• Tape market looks shaky and hard to see what we could replace it with cost effectively

• And we will not have any large budget increases to support our computing

10

Summary
• Understanding our social coding environment is critical

• We need to make best use of our developer community, understanding its limitations
• Improvements should come in a semi-automatic way

• Improved optimisations
• Redesign data layouts (engaging with the experts but not bringing hurdles for others)

• On concurrency, we have a plan that we are confident in
• It already commits our developers to a significant amount of work in the next years

• Next software challenges
• Vectorisation
• Data flow optimisation

• The supporting technology for distributed computing is also critical: storage and networking

11

