ﬂ THE UNIVERSITY
N OF ARIZONA

L

EXPERIMENT

Software Evolution: a view from
ATLAS

Graeme Stewart and Walter Lampl

University | School of Physics
(f GlangW & Astronomy

2017-03-23

High Luminosity LHC
LHC HL-LHC

Run1 LS1 Run 2 LS2 Run 3 LS3 Run 4
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 '
4 R\ 4 ™ 4 ™ 4
0.75 x 10°% cm ™25~ 1.5x 10°% cm™2s™! 2.2 x 10°% cm™2s”] 5.0 x 1054 cm™2s”]
50ns Bunches 25ns Bunches 25ns Bunches 25ns Bunches
Pileup ~40 Pileup ~50 Pileup ~60 Pileup ~200

* High luminosity LHC will deliver about x10 increase in luminosity over what we have
today to ATLAS and CMS

 Needed for precision physics program and to increase the discovery reach of
ATLAS

The Challenge

Event Complexity x Rate = Computing Challenge

* Reconstruction event complexity is highly non-linear with the number of
interacting protons (we call this pileup)

e Rate increases
e 40MHz LHC interaction rate

o ATLAS trigger will reduce that rate to ~1MHz in hardware then to 10kHz
written to offline

 This is x10 more than we have today

¢ LHC IntL (fbA-1) M HL-LHC IntL (fbA-1)

3500

3000 il
|

2500 _§
|

2000
O

]
X 1500 -

&
1000 O ’,00’
:,000
o PR R
ote?
R L L A
2010 2015 2020 2025 2030 2035

3

ATLAS Software

=3 - T T T
8 3500 A, LAS ® Data
o~ ¢
-~ . Siig+BKg Fit (M =126.5 GeV)
3000 H
g -------- Bkg (4th order polynomial) =
© 2500F
w
2000
1500

(5«7 TeV, [Ldted 81t
1000E" (5.8 Tov, [Lat=5 91"

« Software plays a critical role in ATLAS physics production * . A

 Our main Athena code base is ~4M lines of C++ and ~1.5M lines of python z | —«f"’m
e [his does event generation, simulation, digitisation, reconstruction H """
* This excludes a lot of the ‘end of chain” analysis code (see Axel’s talk later) »

Human Challenge

 \We have a very diverse developer community
* A few super-experts who are genuine hard core C++ gurus

* A modest pool of physicist programmers who specialise in software and do write (very) good
code

* Along tail of 100s people with declining levels of experience in C++, right down to starting
graduate students who barely know how to get started

* But who will accumulate experience over time — some will become experts
* \We have to have programming models and patterns that allow non-experts to contribute effectively

* We have invested a lot recently in re-tooling in ATLAS to move to a more standard open source
development model: git, GitLab, CMake

» Code review and continuous integration are now critical parts of our workflow

* Core and framework code must do the heavy lifting in areas like concurrency and vectorisation

Memory Crisis

e Our highest ‘wall’ right now is the memory wall

 We have ~100M detector channels, a complex geometry and complex magnetic field and we are supporting a
precision physics program

e All this Is memory

nungry work and we already have trouble squeezing into the memory/core limits on many of
our grid sites (generally 2GB/physical core)

 We're throwing away 15-20% by not being able to use hyper threaded cores

* We are surviving today for LHC Run 2 by using multi-processing, AthenaMP

* Initialise large static memory structures and then fork multiple event workers
* Takes advantage of the kernel's copy on write to share a lot of memory
 However, this technique is already sub-optimal

|t practically fails already for some workflows, e.g., Heavy lon reprocessing

 We are not really able to use machines with memory/core < 2GB

* Many core machines or weak core systems

ATLAS Preliminary. Memory Profile of MC Reconstruction

/\thénaM - wll hB wor'kcrs
0 Serial At~e~a Jobs

A

200 1020

1200 1420 1600 1800

Framework Upgrade

* We have a major project now to upgrade to a multithreaded version of
our framework

e This is called AthenaMT and is based on an evolution of the Gaudi
framework that we share with LHCDb

* The intention here is to have a framework which is primarily data driven

* We exploit the fact that our data processing can be broken down

* |nto events that are independent

 With parallelism between reconstruction algorithms possible
« We allow for the possibility of exploiting some parallelism within Rough\y, VIEW each row
expensive algorithms
" ° as a thread, each colour
e Although we call this our multithreaded upgrade, in fact we express the

workflow as a set of tasks and use a task based scheduler that adS dll event, eaCh bOX dS

manages the thread pool an event proceSSing Step
* Currently this is Intel's Threaded Building Blocks

- B HLT _g100_loose
- [THLT_2g50_loose
- [HLT_e120_loose
= 1 HLT_mu20

- P HLT_mu8_ed

- JHLT j100

Rol Collection

g100| Step0

2g50|_Step0

— e

HLT Prescaler
e Sler L ne

(]
EGL1RolFilter

mu20_Stepl

mu8_e8_Step0

j100_Step0

= Going via a View
Creation Alg (not shown)

==

N\ = View Merge Alg
IS = HypoTool (One per chain)

2

L2CallM & MuF st/ g pars gy e
’ |

M 2gsm § e1200

2g501_Step3

1
21201 Step3

mu8_e8_Step3

(. :n‘ C I'ﬁ“"-,;..'.'f_.l_":’" eBmuB @100l
; W 25500 ¥ e1200

Events /s

AthenaMT. Complexity and
Early Results

* Note that our scheduling problem is highly non-trivial

 Many control tflow dependencies to support early
rejection of events online

Maximum memeory consumption (RSS)

1.50 GB + 47.19 MB * nThreads

* Results from running simulation in the new
framework very much vindicate our approach
Processing 10 events / thread
- Event Throughput >
¢ Data
- ldeal scaling ® 12l
. ' £
w1 Xeon Phi Z11 e
o ' 64 cores ’ /.."‘

Number of threads

100 150 200 250
Number of threads

Software Tools

Much of our code was written with deep assumptions about serial processing embedded in it
A lot will have to be re-written to become compatible with the new framework
e This is a large undertaking from a community already supporting ongoing data taking and physics analysis
Good software tools already help (but always room for improvements):
 Compilers (gcc, clang)
e Static code checkers (Covertity, cppcheck, ASAN, UBSAN, ...)
* Performant libraries (MKL, Eigen)
Areas where things feel weak:

* Performance analysis — partly hampered by the size and complexity of our code base, these require a lot of investment and
can be hard to map to code improvements

* We really struggle to understand how to improve data flow in and out of memory to best use CPU caches
* Refactoring tools — would be very useful for non-trivial APl changes

* Vectorisation — we have not found a way to vectorise our code in a way that's generally accessible to non-experts and
portable across the code base

* Qur Event Data Model probably does us no favours here, but this is one of things that non-experts are very exposed to

9

Technology Outlook

 Slow death of Moore’s Law

* We will need to invest more in making the best use of the hardware that is on the market
 We are absolutely COTS and we do not drive the market in any way
* Does the hardware that will be available map well to our tasks?
* Low power, many core systems
* |f not, how do we adapt to use what we can”

* Except for a few specialist areas we are very tar away from being able to use GPGPUs for most ATLAS data
processing

* We need good software tools to help here
* We will never reach ‘peak’ efficiency, but which gaps are easier to bridge?
e Storage requirements are steeply rising with HL-LHC
* Disk capacities increasing, but not i/o rates, which is a very serious issue
* Tape market looks shaky and hard to see what we could replace it with cost effectively

* And we will not have any large budget increases to support our computing

10

summary

Understanding our social coding environment is critical

* We need to make best use of our developer community, understanding its limitations
Improvements should come in a semi-automatic way

e Improved optimisations

* Redesign data layouts (engaging with the experts but not bringing hurdles tfor others)
On concurrency, we have a plan that we are confident in

* |t already commits our developers to a significant amount of work in the next years
Next software challenges

* Vectorisation

* Data flow optimisation

The supporting technology for distributed computing is also critical: storage and networking

11

