
The evolution of the 
analysis ecosystem and its 
implications on platforms

Axel Naumann, 2017-03-23 
CERN openlab Workshop on Compute Platforms and Software



Preface
• Problems for analysis are NOT 

• use last % of CPU 

• 100% efficient use of resources 

• Problems for analysis ARE 

• usability and stability of platform 

• quick turnaround / agile development



Intro: 
Status Quo, Context



Context
• Tradition: 

• experiment provides “blessed” data 

• physics groups filter into smaller sets (%) 

• physicists filter into laptop-sized sets (%*%) 

• Last point is most difficult to steer, but is crucial for 
production of knowledge



Context (2)
• Physicists write analysis in C++ 

• speed, correctness; experiments’ software and 
default analysis framework (ROOT) in C++ 

• Physicists write analysis in Python 

• simplicity; excellent (compared to rest of the 
world) C++ binding 

• Very resilient to language changes



Archetype of an Analysis
• Input data in (GB..TB), results (MB..GB) out 

• Results peer reviewed, but generally not code; 
attempts to “force” archival process 

• Iterative process of improving algorithms 

• deadline-driven, quick turn-around essential 

• reluctance to rely on complex systems, better 
use systems under physicist’s control



Embarrassingly //
• Data (and format) allows process parallelism 

• memory limit much less a concern for analyses 

• but results must be merged cross-process 

• Multithreading requires knowledge of thread-safety 

• Shared memory for merging, and separate memory 
for parallelism-safety?



Context Changes



Analysis Needs in 3y
• Challenges: Run 3 with 2x lumi 

• Maybe tenfold data volume 

• Diverse ecosystem: machine learning in R; Spark 
resources; python graphics 

• do we give up on our “default”, at the price of 
fractured analysis community with arbitrary 
ingredients, but benefiting from “industry 
standards”?



Analysis Needs in 5y
• Big challenges: HL-LHC (10x lumi) 

• 20-100 times data and simulated data 

• Will “industry standard” go there? 

• Can we store and move all that data? 

• or should we generate simulation on demand?



Platform Implications



Analysis Implications?

• Analysis traditionally parasitical, eats up as many 
resources as available 

• analysis will adapt to platforms, not vice versa 

• But analysis is the currency of physics research 

• targeted resources will give optimal results



Memory
• Simplicity to program is paramount 

• homogenous address space 

• shared memory as bridge between processes 

• More is better, but not crucial for analysis 

• Persistent snapshotting of intermediary results



Storage
• Trade storage power for compute needs 

• we need to calculate what we cannot store 

• High demand might motivate paradigm shift for 
simulation 

• Multi-tier cache is fine: can prefetch 

• With parallel processing, single output becomes 
bottleneck!



Network

• Lowest-level cache; we can prefetch to hide 
latencies 

• Expect increased role for remote graphics 

• low-latency RPC path 

• No specific requirements



CPU

• Don’t expect the code to change: support generic 
code well 

• Fewer high power cores per node remain desirable 

• Decompression



Ideal Platform
• Network bandwidth (laptops!) scales with compute 

power; data decompression is crucial 

• RAM scales with cores 

• Hardware accessible by “standard code” and 
“standard libraries” 

• big drive to open source, vendor independence 

• Simple to program and robust, by design





Software!
• Simplicity + compute bandwidth + C++ binding 

• Open source 

• Topics: 

• minimization, integration, machine learning 

• “transparent” parallelism: tasks? HPX? Ranges? 
ReactiveX? OpenMP? Co-routines? 

• composable, high-level code


