Advancement in photo-injector laser: Second Amplifier & Harmonic Generation

M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied Physics, Nizhny Novgorod, Russia

> V. Fedosseev CERN

CERN 18 June 2009

Transverse beam profile: Imaging rode from 1st passage amplification

Harmonic Conversion (overcoming pulse pickers)

FHG:

For 500 ns macro pulse duration; rms UV energy fluctuaction (1-2)%: KDP 7.5 mm: $E_g=1.45mJ \rightarrow E_{UV}=0.44mJ \rightarrow ~580nJ$ micro bunch KDP 10 mm: $E_g=1.45mJ \rightarrow E_{UV}=0.54mJ$ BBO 11 mm: $E_g=1.45mJ \rightarrow E_{UV}=0.47mJ$ ADP 20 mm: $E_g=1.49mJ \rightarrow E_{UV}=0.61mJ$ ADP 7.5 mm: $E_g=1.45mJ \rightarrow E_{UV}=0.60mJ \rightarrow ~800nJ$ micro bunch

For 1300ns macro pulse duration rms UV energy fluctuations (1-2)% :

ADP 15 mm: E_g =3.6mJ \rightarrow E_{UV} =1.3mJ \rightarrow ~666nJ micro bunch ADP 20 mm: E_g =3.6mJ \rightarrow E_{UV} =1.29mJ

PHIN

Considering the losses (10% beam line + 8% window + 20% metallic mirror =38%) The ~350nJ energy required is now available from the laser Note that with ~340nJ on laser table = ~235nJ estimated on cathode we obtain ~1.6nC stable charge (and 2.3 nC with a new cathode)

CALIFES Pulse picker

- 1) Pulse Picker system \rightarrow loss = > Transmittivity ~64%
- 2) Total losses CALIFES transport line: 43% (transport ~21% + Coupling ~22%)
 - \rightarrow Now! UV energy KDP(15mm) ~500nJ on laser table \rightarrow 290nJ on cathode (~200 Before)
 - \rightarrow Available! UV energy KDP(20mm) ~640nJ on laser table \rightarrow 364nJ on cathode

Phase Coding

- Further work on the fiber system should be performed on the real
 1.5 GHz laser
- 2) Fiber system introduces too high losses, thus it can not be installed in the existing laser chain......

a possible solution is to install a booster amplifier: fiber amplifier could be used but the reliability and feasibility should be investigated with a company

 A stand alone test can be performed on the non amplified beam: HighQ oscillator + phase coding system
 Laser time is required in order to perform this test.

Conclusions

1) The second amplifier configuration has been modified:

2 collinear passages Now!

2 cross passages Before!

 \rightarrow losses are reduced, final peak power ~8.5KW, ~6µJ in micro pulse [~4µJ before]

\rightarrow Future improvement:

- 1) better matching of the beam profile and intensity distribution into the amplifier (re-design of beam line)
- 2) different principles of operation (seeding of the already pumped amplifier)...

2) Different harmonic generation crystals tried:

ADP, KDP - look promising :

high efficiency, satisfactory transverse beam quality

BBO – lowest conversion efficiency and bad transverse beam quality due to walk off Further studies on harmonic conversion: temperature stabilization, longer KDP crystals; DKDP in non-critical phase matching

3) Further development of the phase coding must be organized in compatibility with the running time of the machine