Challenges in Medical Physics

Stephen Myers ADAM SA Former CERN Director of Accelerators and Technology

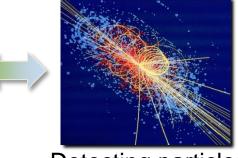
Some Personal History

- 1972—1979 Intersecting Storage Rings (ISR): First Proton-Proton Collider ever built
- 1980—1989 Design of Large Electron Positron Collider (LEP)
- 1983 Myers & Schnell: "Proton Collider in the LEP Tunnel": LEP Note 440. First documented proposal for LHC.
- 1989-2000 Commissioning and Operation of LEP
- 1996—2008 Design of major accelerator components of the LHC
- 2009—2014 CERN Director of Accelerators and Technology
 - LHC "accident" in September 2008 repaired November 2009
 - Higgs discovery 2012
 - August 2012: "High Energy LHC (Document prepared for the European HEP strategy update)" now FCC

Some Personal History (2)

• 2014-2015 Head of CERN Medical Applications

- 2016 present: Executive Chair of ADAM SA
 - Development a <u>proton</u> Linear accelerator for cancer therapy


Development and Application of Technologies developed for particle physics to Medicine

What are "CERN" Technologies

CERN Technologies and Innovation

Accelerating particle beams

Detecting particles

Large-scale computing (Grid)

The Challenges of Medical Physics

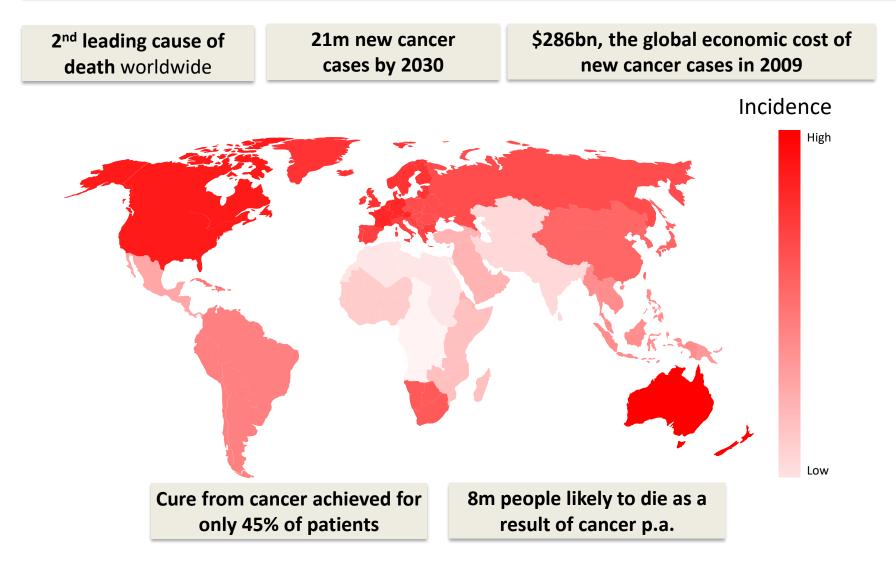
Initiative 1996-2000: Accelerator Design "PIMMS"

"In 1996, CERN initiated the Proton Ion Medical Machine Study (PIMMS), which aimed at designing a synchrotron optimized for the treatment of moving organs with carbon ions (and protons). The project was adapted by TERA and used as a basis for the CNAO centre, which has been completed in Pavia by the CNAO Foundation and INFN. The MedAustron facility utilises the same synchrotron design, and is currently being built in Wiener Neustadt (Austria)."

What has happened since 2000 on the technology side?

- LHC accelerator technology development
 - Operation of 8T magnets
 - Testing of 11T magnets for Luminosity upgrade
 - Development of 18-20T magnets for energy upgrade
- LHC Detectors developments
 - Crystal scintillators improvements Medical Imaging and Diagnostics

MRI


Large scale data storage,

transfer and analysis

- Medipix proliferation and enhancements
- Developments of new vertex detectors for LHC luminosity upgrade
- Development of TOF resolution for Luminosity Upgrade
- CLIC
 - Accelerating structure frequency reduced from 30GHz to 12GHz
 - Development of room temperature structures for 100MV/m gradient
 - Proposals for structures of 3 and 5.7 GHz with 30 and 50 MV/m for medical applications
 Compact Accelerators Protons and Light Ions
- LHC Grid
 - Demonstration of the efficiency and reliability
 - Rapid adoption to new domains; Medicine
 - Developments of medical simulations with FLUKA/GEANT Treatment planning, medical research

Why is this work so important?

Cancer, a Worldwide Fatality with an Astronomical Cost

1. Alone or in combination with other modalities

2.7+By 1934 Contend had developed a protracted, fractionated process that remains the posis for entrept rediction therapy

3. GLOBOCAN 2008, Cancer incidence and Mortality Worldwide. IARC, 2010 (http://globocan.iarc.fr) http://info.cancerresearchuk.org/cancerstats/

CMA: The 7 CERN Initiativ

- New Updated Medical Accelerator Design
 - coordinate an international collaboration to design effective accelerator facility, using the most ar ckape
- Radio-Isotopes (imaging and possi
- Id-alone aging **Detectors** for beam control an crol of radiation **Diagnostics and Dosimetry** part of a
- **Biomedical Facility**
 - creation of a facility at *C* energies to external
- Juge Scale Cative is planning with ant omr Military ant portant as a. nd data (simulations, treatment
- ons for Medical Applications
 - Jations; Ablative Therapies...

cost-

Jies

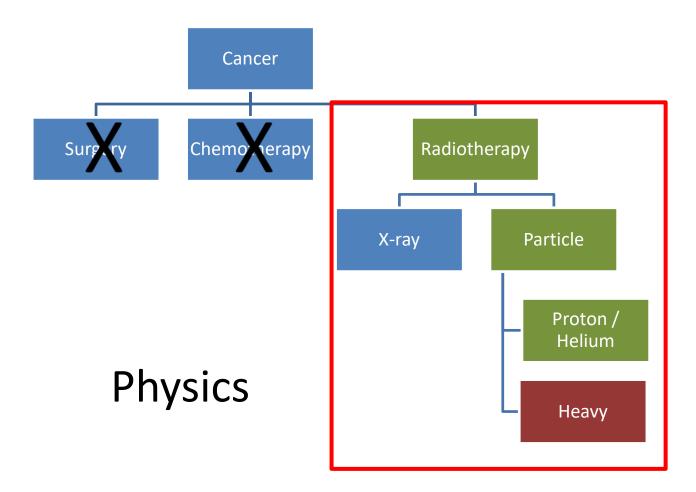
particle beams of different types and

ogy and detector development

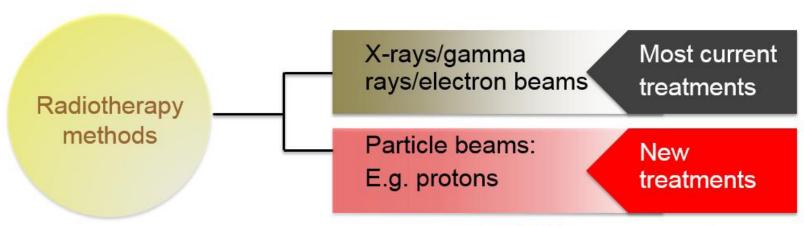
of simulation results

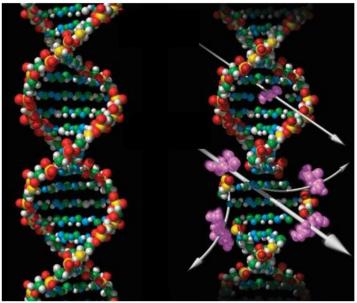
The "Package": Treatment of Cancer

- Tumor:
 - Abnormal growth of cells
 - Benign: remain at origin, compact
 - − Malignant: uncontrolled, can spread \rightarrow cancer
- Treatment with
 - Surgery
 - Radiation
 - Chemotherapy

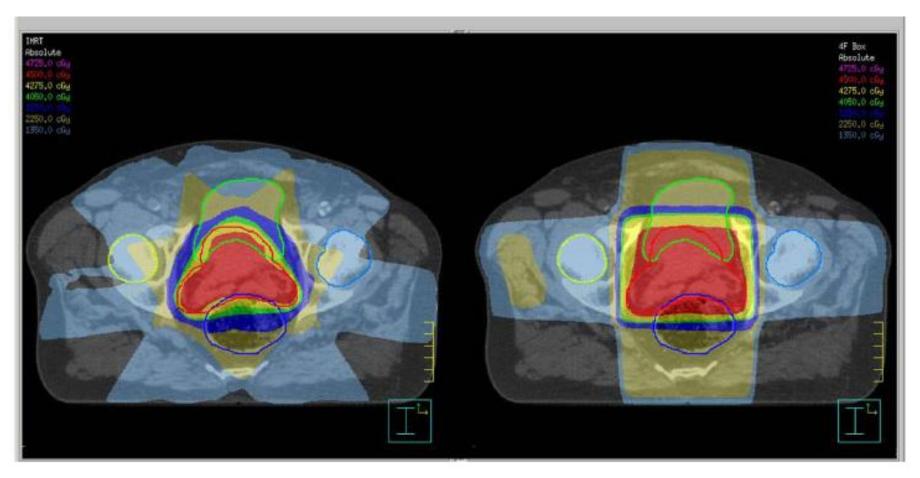


Surgery Removal of cancer cells using surgery Radiotherapy Destruction of cancer cells using radiation

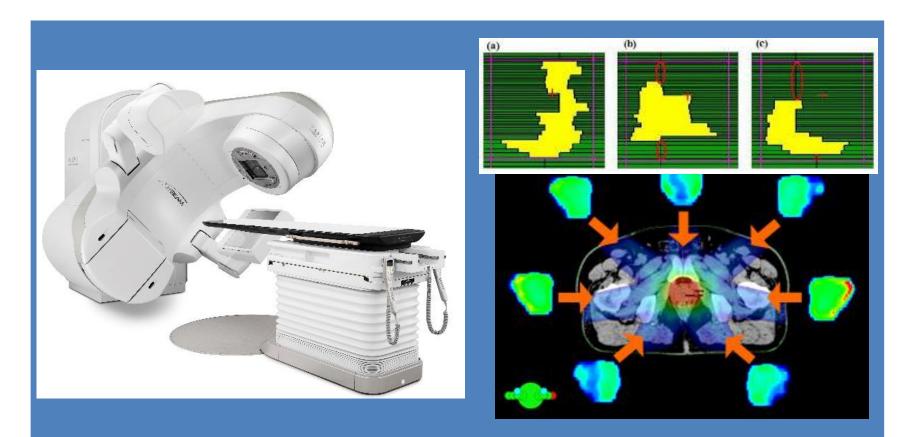

Chemotherapy Destruction of cancer cells using drugs (anticancer agents)


The Challenge of Medical Physics -Cancer treatment-

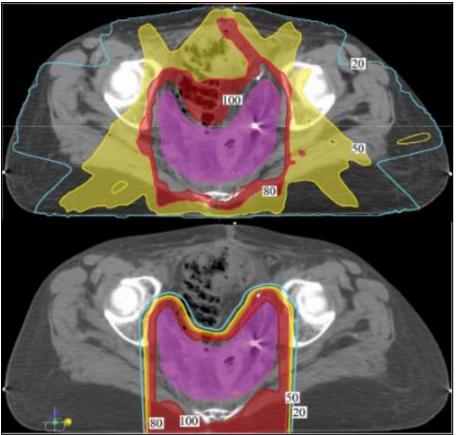
Radiotherapy


- Radiation can break the DNA of the cells they collide with
- Healthy cells get damaged too...
- Advantage of protons (see next)
 - Stop and loose dose in welllocalized position
 - It is charged (can be steered with magnetic field)

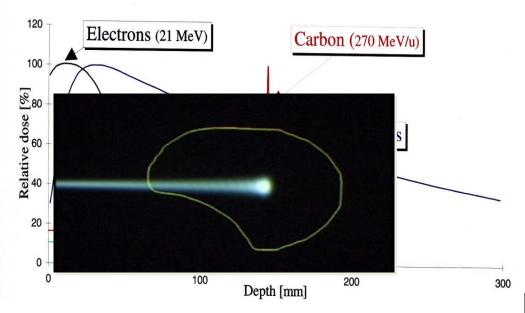
The Challenge of Radio Therapy


- "To irradiate
 - The tumour
 - The whole tumour
 - And nothing BUT the tumour"

Radiotherapy: X-rays (Ratio of Target to Normal Tissue Doses)


Current state of RT: Intensity Modulated Radiotherapy (IMRT) – Multiple converging field with planar (2D) intensity variations 1990s: 4 constant intensity fields

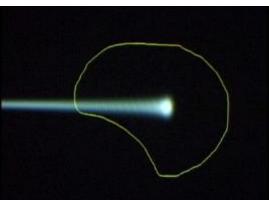
Modern X-ray Therapy


Varian TrueBeam accelerator system with gantry, patient positioner and X-ray panels to acquire CBCT and planar X-rays. Intensity modulation is achieved by changing the multi-leaf collimator (MLC) patterns (right), gantry rotation and dose rate. Thus, intensity modulation is achieved through mechanical (slow) means.

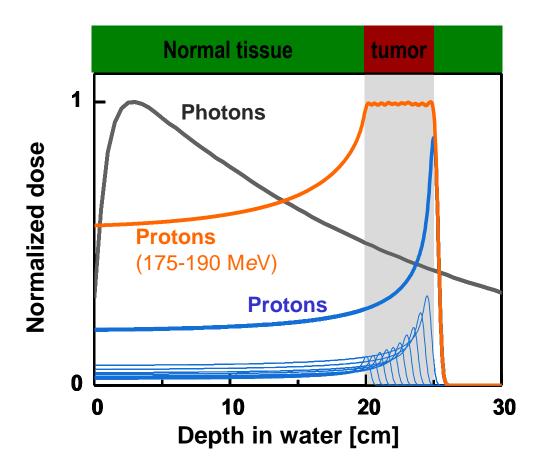
Ion therapy best advances future of RT

- State-of-Art X-ray (IMRT) has reached its physical limit
 - Any advances in radiotherapy are best achieved with light ions
 - proton is currently available
 - Helium and beyond tomorrow
 - Carbon is "popular" but exclusive
- Ion therapy must achieve significant "market / clinical" penetration (~20%) to be relevant

Why Protons (hadrons) are <u>potentially</u> a much better weapon for radiation therapy


The BRAGG Peak

Tumours close to critical organsTumours in children


• Radio-resistant tumours

The physics properties of light ions (Bragg) may make them much more efficient in treating tumours

Energy deposition

Physical basis

X-Rays and Protons

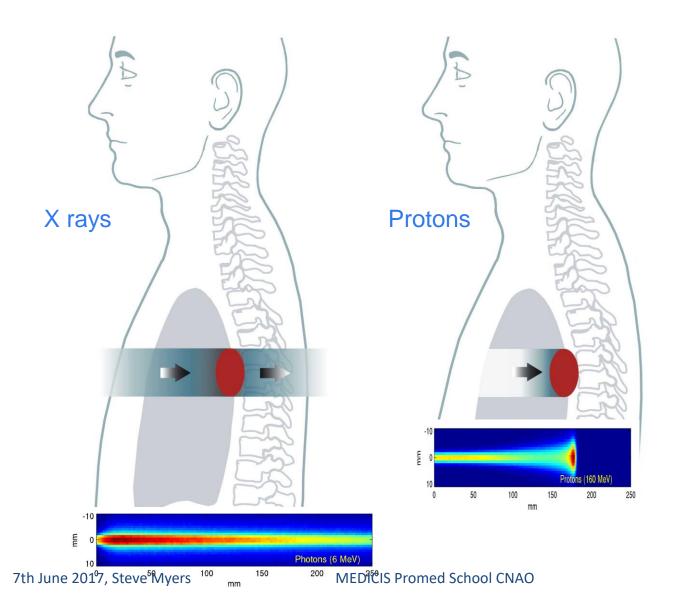
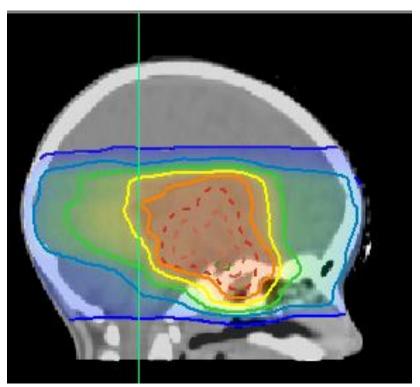
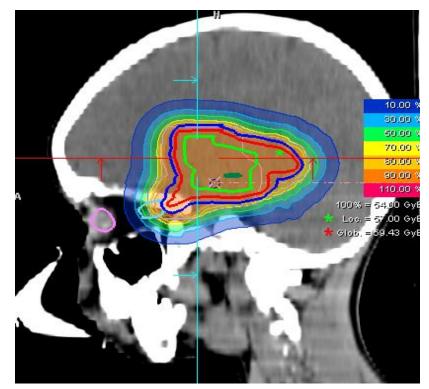



Image courtesy MedAustron


Potential of particle therapy

Photon-IMRT

Universitätsklinikum Dresden

Protons

HIT, Heidelberg

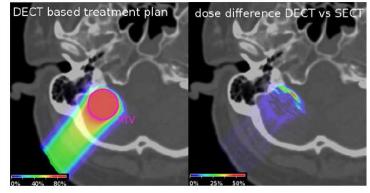
7th June 2017, Steve Myers

MEDICIS Promed School CNAO

Light lons (protons etc)

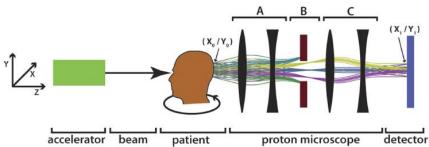
- Advantage of light ions
 - They stop! (good for precision of energy deposition)
 - They are charged: can be guided and focused magnetically
- Disdvantages of light ions
 - They stop! (But WHERE? Difficult for diagnostics)
 - They are charged: Effected by strong magnetic fields (e.g. MRI)

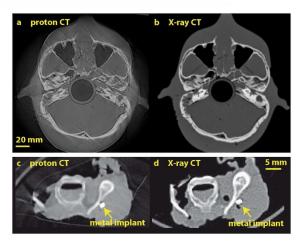
The Challenges of Particle Therapy


Cost

- Protons have the advantage of stopping in patient (compared to MV x-ray therapy), but where exactly?
- Treatment with scanned beams is sensitive to organ motion.
- The <u>radiobiology</u> of particle therapy is not completely understood.
- Patients are always treated to the maximum tolerable radiation dose, therefore additional conformity is desirable either minimizing side effects or increasing cure rate.

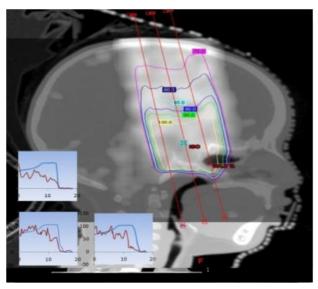
Proton Range Determination


- Current practice 3% of range + 1 mm required planning uncertainty; This is because patient planning is performed with kilo-voltage x-ray data from CT scans and mapped to approximate proton stopping powers in tissues.
- Possibilities to determine in-vivo range more accurately:
 - As Part of the Radiotherapy Planning Process


Dual energy CT: using effective Z and electron density, proton stopping power mapping is improved.

Van Elmpt, Landry et al. Radiother Oncol 119 20016 137

Proton Tomography: Determine (measure) proton stopping powers on a voxel basis directly with the proton beam in imaging mode

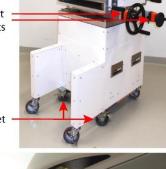


M. Prall, M. Durante, et. al, "High-energy proton imaging for biomedical applications," Sci Rep-Uk 6, 27651 (2016).

Proton Range Determination

As Part of the Radiotherapy Verification Process

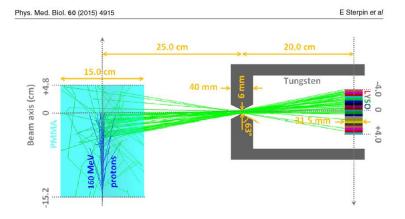
Proton-PET: using positron β + generation from treating protons, acquire post-treatment Positron **Emission Tomography** (PET) scans and correlate to proton dose. PET distribution \neq dose distribution, biological washout also problematic.



Slit collimator (360° rotatable)

Linear stages for left-right and up-down movements (not shown for forwardbackward and rotational movement)

Fixation feet



In Vivo Proton Beam Centroid and Range Uncertainties Determined Empirically From Positron **Emission Tomography Due to Single Uniform Field Patient Treatment Activation** Farr, J.B. et al.

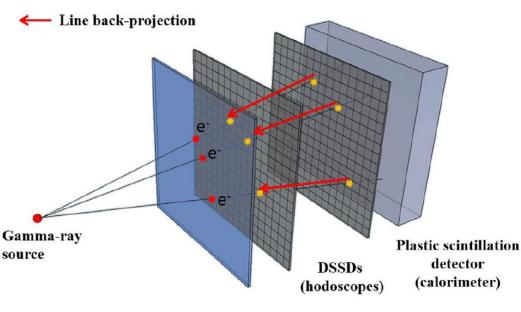
International Journal of Radiation Oncology • Biology • Physics, Volume 87, Issue 2, S185

Prompt Gamma:

Using gamma camera and collimation, correlate (p,gamma) events to proton range in patient

Others: Ultrasound, MRI, point dosimeters

First clinical application of a prompt gamma based in vivo proton range verification system Richter, Christian et al. Radiotherapy and Oncology, Volume 118, Issue 2, 232 - 237

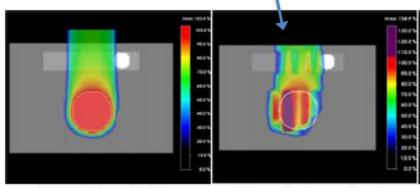

Prompt Gamma

Nuclear Instruments and Methods in Physics Research A 857 (2017) 82-97

"Prototype system for proton beam range measurement based on gamma

electron vertex imaging"

Han Rim Lee at al.


H.R. Lee et al.

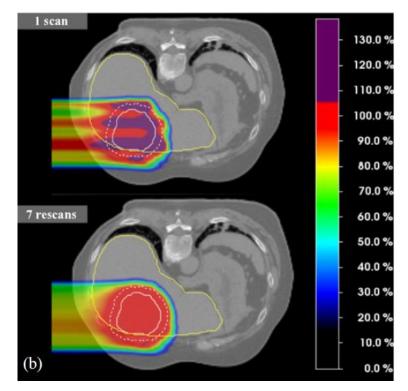
Be plate (electron converter)

Fig. 1. Principle of gamma electron vertex imaging (GEVI). The high-energy prompt gammas are converted to electrons by Compton scattering, and then the converted electrons are tracked to image the emission locations (= vertices) of prompt gammas. To locate the vertices of prompt gammas, trajectories of electrons are back-tracked by the line back-projection method.

Proton Plan and Delivery Sensitivity to Geometry

- Because protons stop, unlike photons, they are more sensitive to geometric changes either:
- During treatment (inter-fractional); Target motion during treatment gives susceptibility to interplay effect between scanning beam and target.

(i) static dose calculation

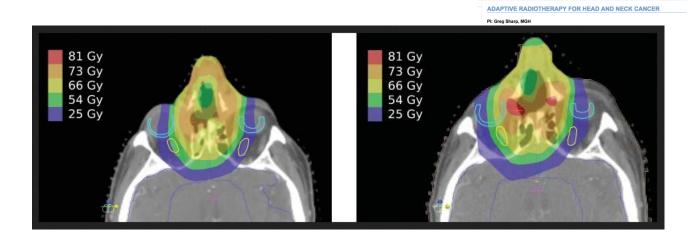

(ii) dose calculation taking into account dynamic dose delivery (1 x scanning) and motion of the geometry

"Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion"

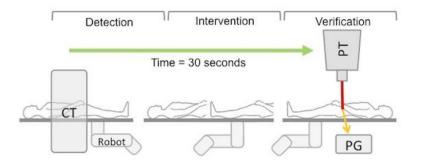
Antje-Christin Knopf, et al

Physics in Medicine and Biology, Volume 58, Number 17 (2013)

Volumetric rescanning could solve the problem, but need fast delivery and spot by spot energy changes (not available today).

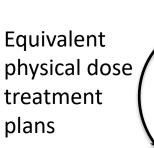


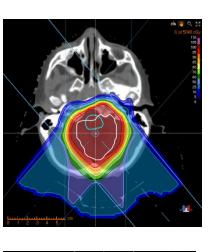
"Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients" K Bernatowicz, A J Lomax et al Physics in Medicine and Biology, Volume 58, Number 22 (2013)

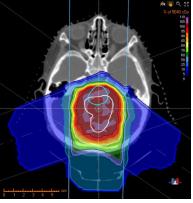

Proton Plan and Delivery Sensitivity to Geometry

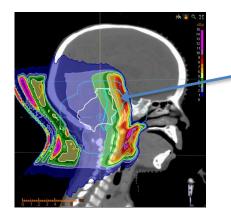
 Between sessions (intra-fractional); Target changes during a typical 25-30 day course of treatments are common in head and neck cancers, and others as well. Plan adaptation, usually a completely new treatment plan is required taking significant clinic resources, doctors, planners, physicists. Consider instead a rapid re-planning system.

National Alliance for Medical Image Computing




AdaptNow concept from Delft: Combines on the fly patient re-planning with range verification. Typically plans require quality assurance prior to treatment, and additional challenge to re-planning. The range verification seeks to obviate the need for this.




Proton Biological Effects

- Radiobiological effectiveness (RBE) = proton effect/photon effect at same physical dose
- Depends on E, tissue type, oxygenation
- A universal factor of RBE = 1.1 is applied
- We know this is incorrect, especially for central nervous system (CNS) tissues

Excess RBE to brainstem; patient with related patient effect

Can give different biological modeling

Patient without related effect

CMA: The 6 CERN Initiatives

- New Updated Medical Accelerator Design
 - coordinate an international collaboration to design a new compact, cost-effective accelerator facility, using the most advanced technologies

Cost, manufacturability, treatment efficiency, modularity, reduced footprint

Radio-Isotopes (imaging and possibly treatment)

Generation of new types of radio-isotopes for improved diagnostics and new treatment scenarios

 Detectors for beam control and medical imaging Diagnostics and Dosimetry (pot) for control of radiation

Improved diagnostics, measurement of beam on target in real time

- Biomedical Facility
 - creation of a facility at CERN that provides particle beams of different types and energies to external users for radiobiology and detector development
 - Iterative experimental verification of simulation results

Measurements of radiobiology of different ions, testing of new diagnostics, verification of radiobiological simulations

• Large Scale Computing and data (simulations, treatment planning telemedicine etc)

Large scale data handling, remote acquisition to medical data, correlation of medical results

• Computer Simulations for Medical Applications

Improved predictions of radiobiological processes

Important Parameters for PT Accelerators

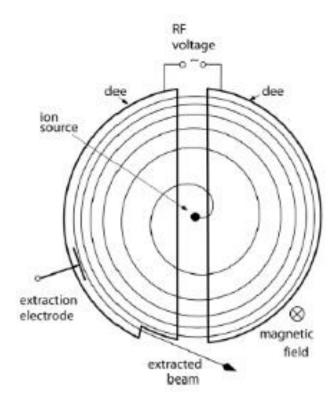
- Beam Size (emittance): <u>Cost and Treatment Efficiency</u>
 - Small size for Pencil Beam Scanning
 - Small size allows small aperture magnets for the beam transfer line
 - Cheaper magnets
 - Lighter magnets
 - More simple gantry
- Energy Modulation (Depth modulation): <u>Treatment Efficiency</u>
 - Adaptive Radiotherapy
 - Allows fast feedback on organ movements
 - E.g. MRI guided treatment in real time
 - «random» feedback difficult using ESS
 - Not bound to «energy» layers; could paint along depth

• Fast Speed of Change of Beam energy: <u>Treatment Efficiency</u>

- Allows many beam spots in an organ movement cycle time
- Allows volumetric rescanning
- Modularity: <u>Cost</u>
 - Allows installation in "difficult" locations (e.g. Harley Street)
 - Ease and cost of installation
 - Allows installation without expensive load handling devices

Important Parameters for PT Accelerators

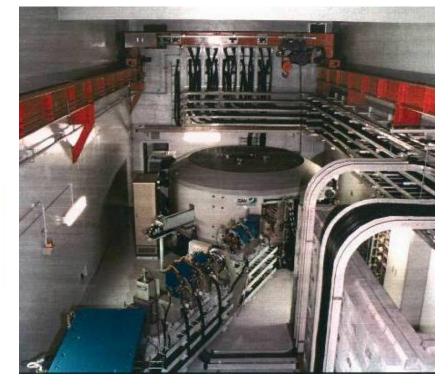
- Spot size regulation: <u>Treatment Efficiency</u>
 - Allows high intensity large spots at centre of tumour and smaller low intensity spots at the penumbra: less collateral radiation
- Spot Dose Regulation (speed): <u>Treatment Efficiency</u>
 - Allows more precise dose distribution
- Radiation Activation due to Proton losses: <u>Cost</u>
 - Reduced shielding
 - Reduced Decommissioning costs
- Footprint Size: Cost
 - Construction cost
- Operational Costs: <u>Cost</u>
 - Electrical power consumption
 - <u>Number of highly trained personnel needed to operate</u>



Cyclotrons (Isochronous)

Constant B-field

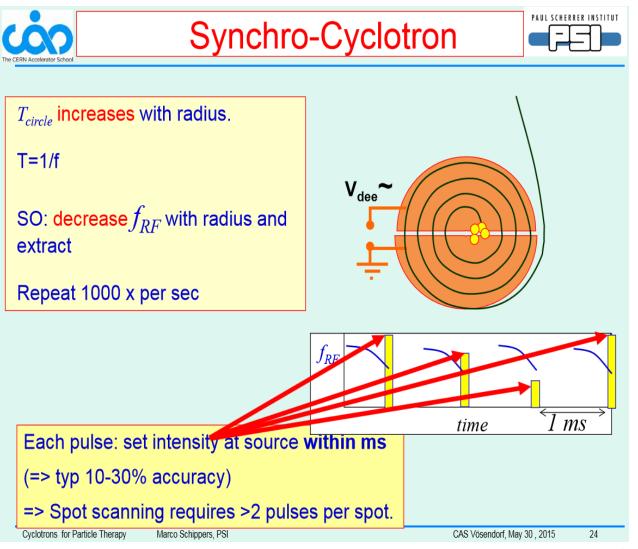
- Revolution period (almost) independent of beam energy →
 - Fixed RF frequency
 - Beam can be continously sent from the source (CW, not pulsed)


- Fixed extraction energy !
 - Need Energy Selection System

Photographic Examples (Isochronous Cyclotrons)

Varian SC isochronous cyclotron

IBA Normal conducting cyclotron



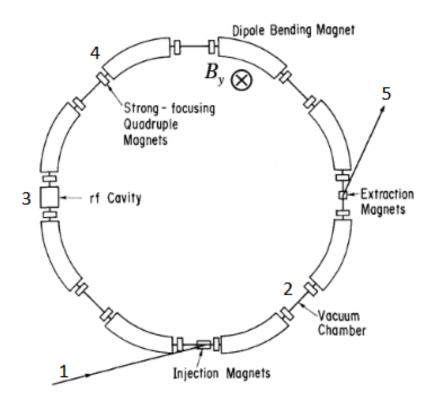
7th June 2017, Steve Myers

MEDICIS Promed School CNAO

Synchro–Cyclotrons

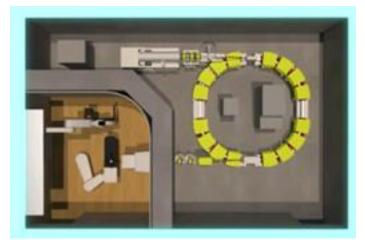
- Synchro-: RF frequency and spatial value of B are synchronous
- Cyclotron: Only one magnet (spiralling trajectory)
- Beam is pulsed (need to wait extraction before restarting the RF frequency cycle)
- Intensity can be adapted from pulse to pulse -> IMPT

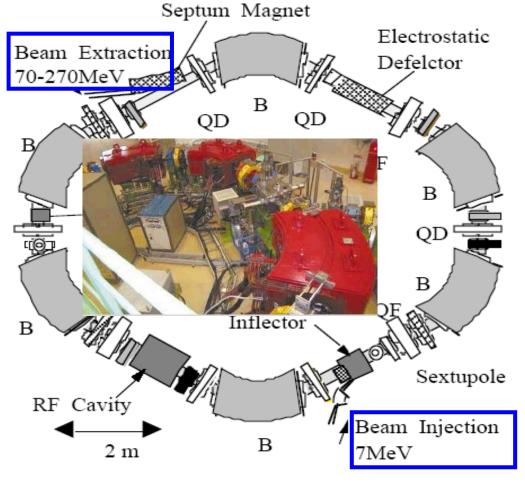
Photographic Examples of Synchro – Cyclotrons


Mevlon TriNiobium Core SC synchrocyclotron

IBA S2C2 SC synchrocyclotron

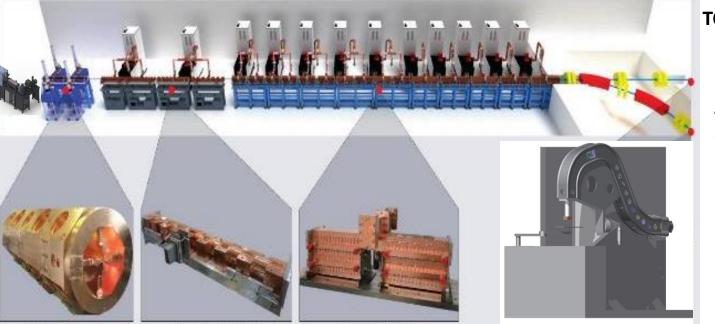
Synchrotrons


- Both RF freqeuncy and magnetic field vary in time during the acceleration (in synchronism)
- Need pre-injector, injection and extraction systems
 - Critical and generate asymmetric beams in transverse phase space
- Cycling machine, with CW beam during spills (slow extraction)
- Variable energy: Output energy can be changed on a pulse to pulse basis
- Recent: Extraction at «flat-top» with variations in energy


Photographic Examples of some Synchrotrons

ProTom compact synchrotron

Hitachi synchrotron



-Mitsubishi Steve Myers

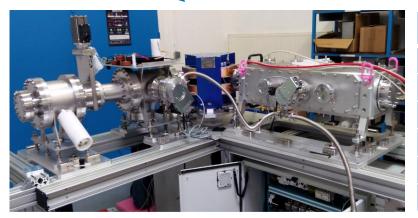
MEDICIS Promed School CNAO

Examples of Linacs

TOP-IMPLART

RFQ at 750MHz; Accelerating Structures at 3000MHz

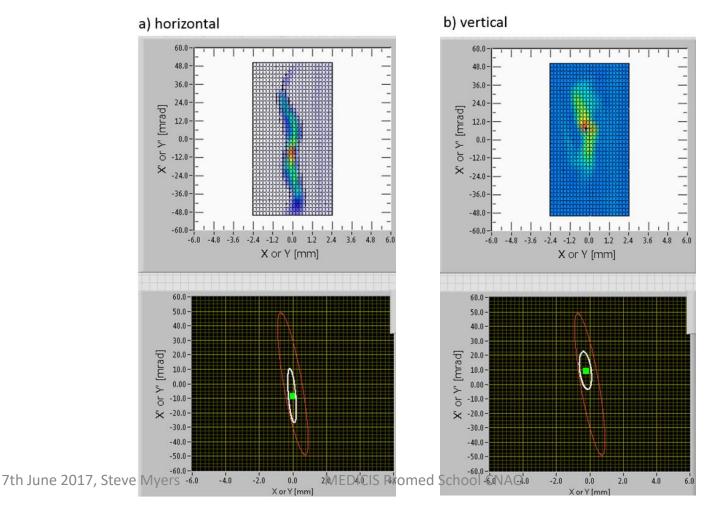
Radio Frequency Quadrupole (RFQ) Side Coupled Drift Tube Linac (SCDTL) Coupled Cavity Linac (CCL) Gantry and patient couch



LIGHT Main Parameters

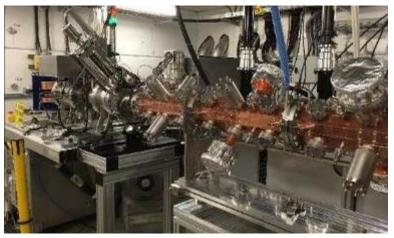
Parameter	Value	Unit
Length	~25	m
Max. Energy	230	MeV
Output Peak Current (at the end)	0.3 - 90	μΑ
Pulse Length	0.5-5	μs
RF Frequency	2997.92	MHz
Max. Repetition Rate	200	Hz
Peak RF Power	~60	MW

Proton Source



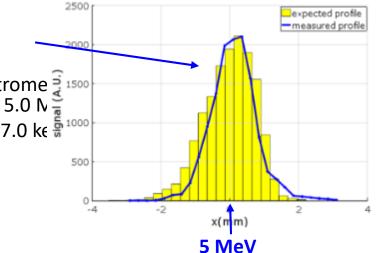
Quantity	Value	Unit
Output Energy	40 ± 0.4	keV
Output pulsed Current	Range: [1-300] ± 2%	μΑ
Current ripple during flattop	±1	%
Pulse to pulse current reproducibility	± 2-3	%
Repetition rate	Range: [5-200]	Hz
Beam pulse width	Range: [0.5-5]	μs

Proton source test results

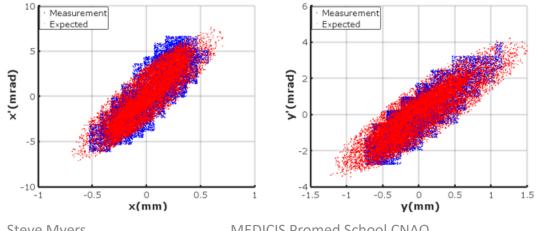

Example of emittance measurements and corresponding rms emittances (white) with the representation of the extrapolated RFQ acceptance ellipse (red).

The Radio Frequency Quadrupole (RFQ)

- High frequency RFQ designed by CERN
 - 4 vanes type
 - 750 MHz
 - 4 modules 2 m
 - 5 MeV energy gain


4th June 2017, Steve Myers

SectionRFQRF frequency [GHz]0.749Energy [MeV]0.04-5Length [m]2

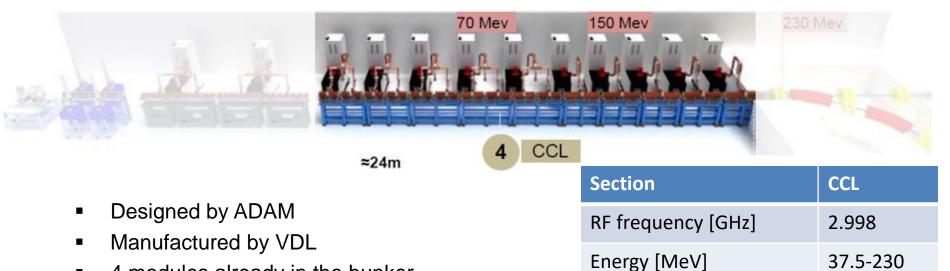

RFQ test results

- Results from the RFQ commissioning with beam •
 - Profile and energy measurements
 - Comparison of measured and expected beam profiles at the spectrometer profile monitor
 - calculated average beam energy from the spectrome 2 1500 measurement is 5.07 MeV (expected energy 5.0 N
 - Energy spread: measured rms energy spread is 7.0 ke 1000 (expected value is 7.5 keV)

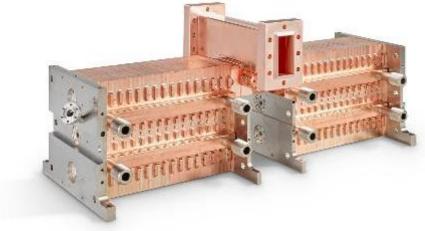
Emittance

• The expected rms emittance is 0.33 π .mm.mrad in both planes

The Side Coupled Drift Tube Linac (SCDTL)

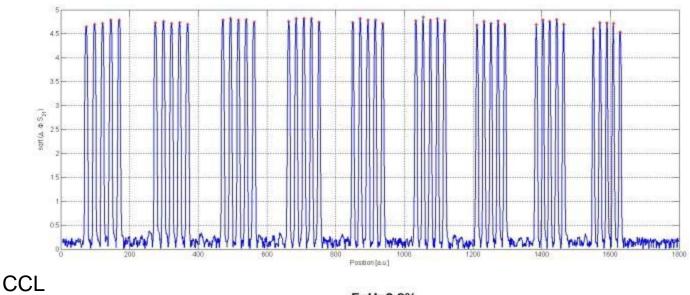

- Designed in collaboration with ENEA (Frascati, I)
- Manufactured at TSC/VDL

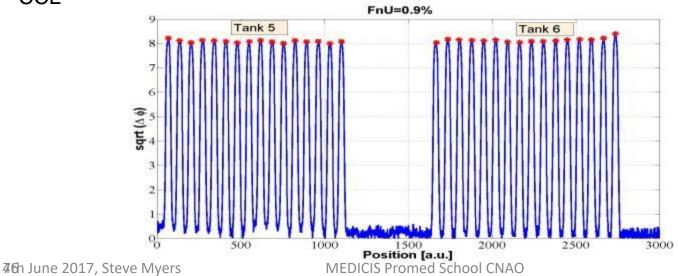
Section	SCDTL
RF frequency [GHz]	2.998
Energy [MeV]	5-37.5
Length [m]	6.2


The Coupled Cavity Linac (CCL)

Length [m]

15.5


- 4 modules already in the bunker (conditioned)
- All remaining modules in production



ጃቼ ካ June	2017,	Steve	Myers
------------------	-------	-------	-------

SCDTL and CCL E-field measurements

SCDTL

RFQ Power System

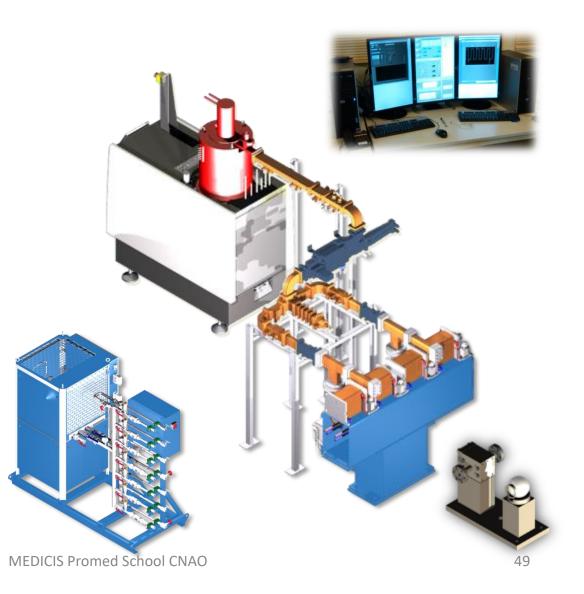
Parameter	Value
Cathode voltage	38 KV
Grid voltage	200 V
Average beam current	4 A
RF drive power	800 W
RF output power	100 KW
Load mismatch	1.5:1

4₽ h June 2017, Steve Myers

SCDTL and CCL RF Power System

 Commercial modulator and klystron systems

SCANDINOVA Modulator


Parameter	Value
Pulse Voltage	155 KV
Pulse Current	110 A
Pulse Rep. Rate	5 to 200 Hz
Pulse Length (top)	0.5 to 5 µsec
Pulse Flatness (top)	<1%

Toshiba Klys	stron
Parameter	Value
Frequency	2998.5 MHz
Peak RF Drive Power	120 W
Peak RF Output Power	7.5 MW
Gain	48 dB
RF Pulse Width	5 μsec

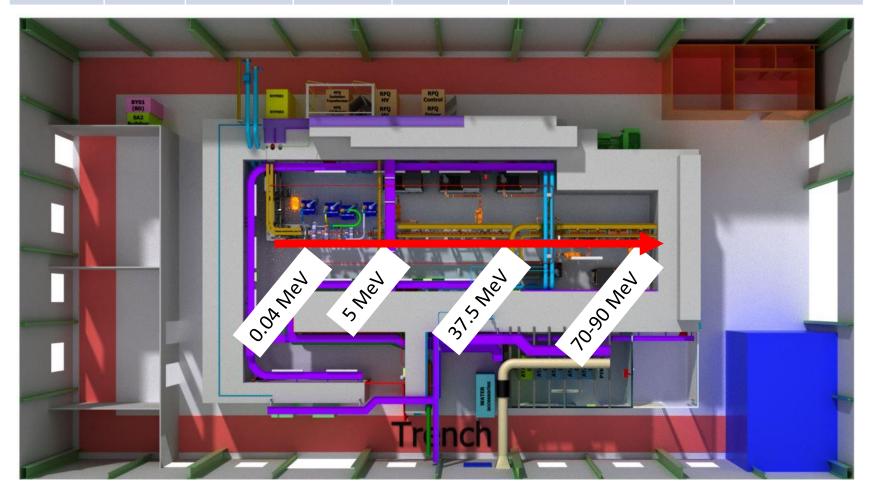
A modular approach towards industrialization

Unit Systems

- 1) Accelerating System
- 2) Control System
- 3) Cooling System
- 4) Focusing System
- 5) RF Network System
- 6) RF Power System
- 7) Support System
- 8) Vacuum System

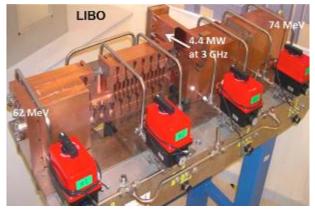
LIGHT features for proton therapy

- Active energy modulation → no absorber and degrader
- Pulsed beam at 200 Hz \rightarrow intensity and energy modulation in 5 ms
- Small beam emittance \rightarrow small magnets aperture
- Almost no losses! → reduced shielding

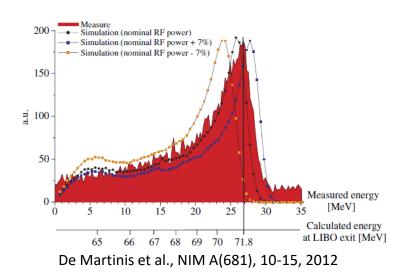

→ beam suited for 3D spot scanning

LIGHT - Pulsed beam structure ×10⁶ Power [W] 4 2 0 x 67 200 Hz - 5 ms $imes 10^6$ Power [W] 0 x 500 5 us $imes 10^6$ Power [W] **RF** pulse 0 x 6000 $\times 10^{6}$ 3 GHz - 0.3 ns I Beam Power [W] l bunch

Time [us]


Commissioning of LIGHT @ CERN

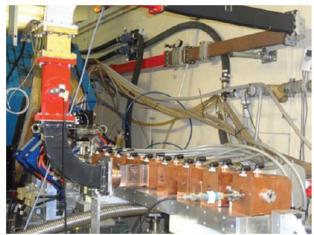
source	RFQ	SCDTL1	SCD	TL 2-3	SCDTL4	CCL1-2	CCL3-6
40 keV	5 MeV	7.5 MeV	16 MeV	26.5 MeV	37.5 MeV	52 MeV	70-90 MeV

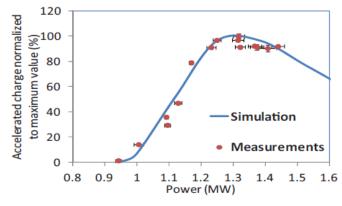


LIGHT background: the LIBO prototype

- LIBO (Linac Booster) prototype by TERA-CERN-INFN
 - Built in 1999-2000
 - First proof of principle
 - Tested with beam in LNS (Catania)

Amaldi et al., NIM A(521), 512-529, 2004


LIGHT background: the first unit by ADAM


- First Unit of ADAM (2009)
 - first industrial 3 GHz linac unit for PT
 - Optimized for industrial production

LIGHT background: acceleration in SCDTL at ENEA

- First Unit of SCDTL built and tested at ENEA
 - SCDTL designed by L.
 Picardi (ENEA)
 - Tested with beam at ENEA
 Frascati (Italy)

C. Ronsivalle et al., EPL, 111 (2015) 14002

Beam Delivery

Delivery of protons to patient

Delivery techniques on the market today

- Passive scattering: scattering through a material to spread the beam over tumor (until a few years ago: the only method used)
 - High dose delivered outside target
 - Individual scattering device for each patient
 - Neutron background
 - "Old technology" (...but still in use in many centers!)

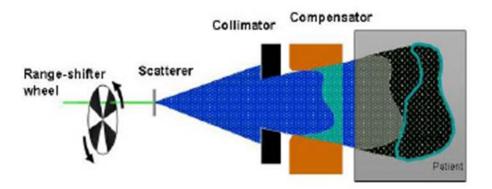
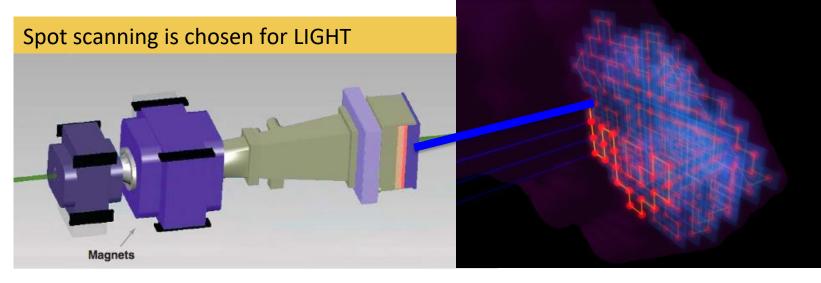


Figure-2a. Diagrammatic representation of a typical passive scattering proton beam delivery system.

Spot Scanning


Second delivery technique:

Spot scanning: beam is steered with magnets towards the target position

- + More conformal dose
- + No individual hardware
- + Less neutrons
- + Modern state-of the art technique

Strong points of LIGHT system:

- XY position accuracy < 0.5 mm
- We can change energy, position and intensity of every pulse

Pencil Beam

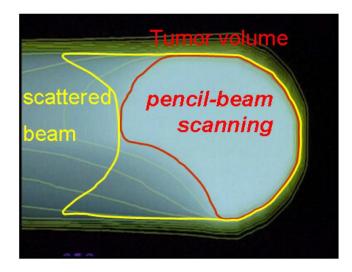


Fig. 17. Comparison of the dose distributions for a scattered beam (the light curve represents the 95% isodose line) and one obtained with pencil beam scanning (gray value; the dark curve is the 95% isodose line and coincides with the target volume).

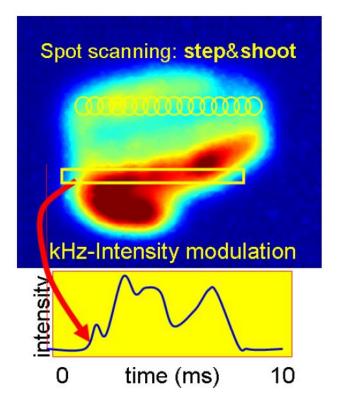
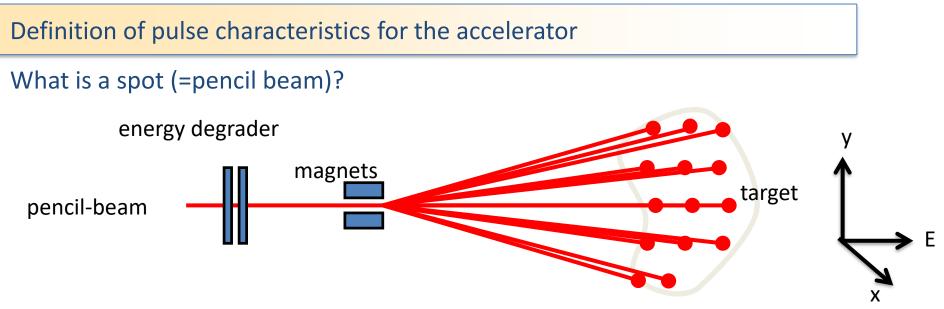



Fig. 18. Dose application with pencil beam scanning by means of spot scanning (top row of circles) and line scanning, where the beam intensity (curve at bottom) varies in time during the continuous sweep made by the scanning magnet.

J.M.Schippers: "Beam Delivery Systems for Particle Radiation Therapy: Current Status and Recent Developments": Review of Avvelerator Science and Technology Vol.2 (2009) 179-200

Treatment Plan with Spots (PBS)

Pencil beam= small proton beam

Spot (pulse) parameters:

- x-value
- y-value
- Energy E
- Charge Q (determines the dose)
- Width sigma
- Spacing between them (lateral and longitudinal)

A treatment planning system calculates the best list of spots

Particle Losses and Radiation

Fixed and Variable Energy Accelerators

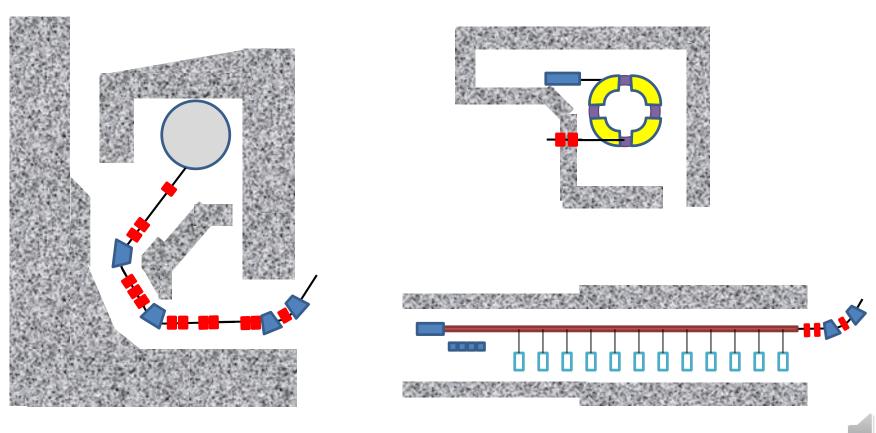
In fixed energy accelerators, the energy is reduced by placing an energy absorber (ESS) in the path of the beam. This ESS

- Reduces the energy
- Reduces the number of protons dramatically (mitigated by increasing the number of protons accelerated)
- Causes local increased radiation (mitigated by locally enhanced shielding)
- Increases the beam size (mitigated by collimation)

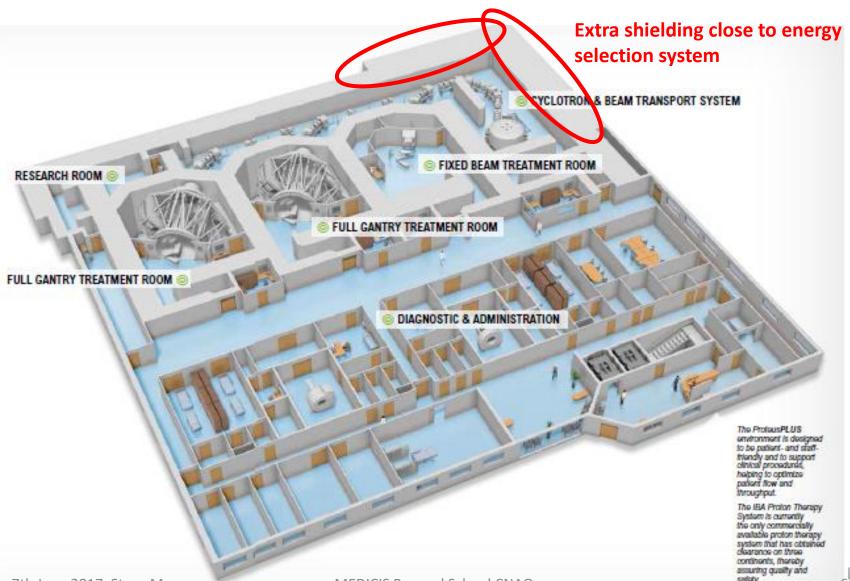
Current (Protons) Needed with Cyclotrons

Cyclotrons - General

Drawbacks


- Compactness results in high losses: 20-70% lost @ extraction (larger PSI machine <1% extraction losses)
- Beam transport transmission : Cross-section + momentum cuts after degrader result in severe secondary losses
- Energy degrader and losses: component activation and hands-on maintenance issues, more shielding
- Concerns and limits to compactness: degrader ,ESS, scatterers, collimators- neutron background dose to patient and associated risk of 2nd cancer

Energy	PSI – the best	Recent Facility
250 <u>MeV</u>	100%	100%
240 <u>MeV</u>		6.6%
230 <u>MeV</u>	10%	
100 <u>MeV</u>	3%	0.06%
70 <u>MeV</u>	1%	0.03%

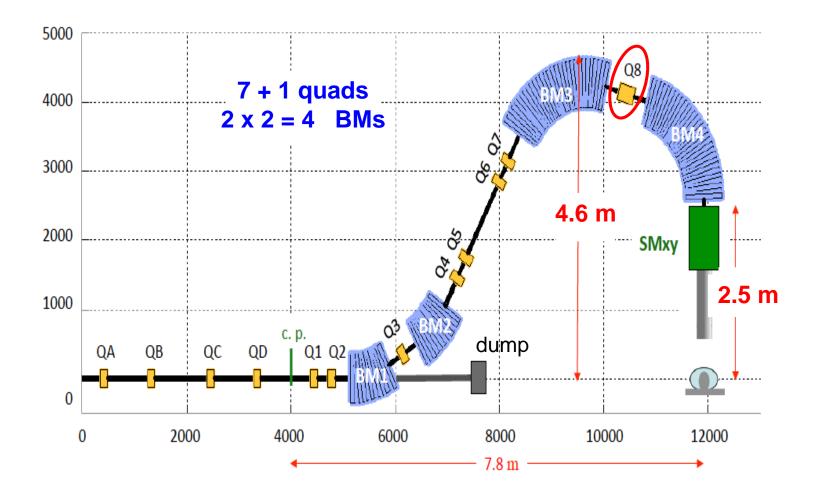


What About Shielding ?

Example of shielding impact on the foot-print (only accelerator is considered, since treatment room will be all the same independent of accelerator)

Example IBA proteusPLUS with Cyclotron

Beam Transport


Beam Transport from Accelerator to Treatment Room

- Charged particles can be steered and focused by electromagnets
- In "conventional" beam transfer lines there is a one-to-one relationship between the beam energy and the magnetic field (spectrometer)
- Hence fast changes in beam energy require fast changes in magnetic fields (magnetic hysterisis and power converters)

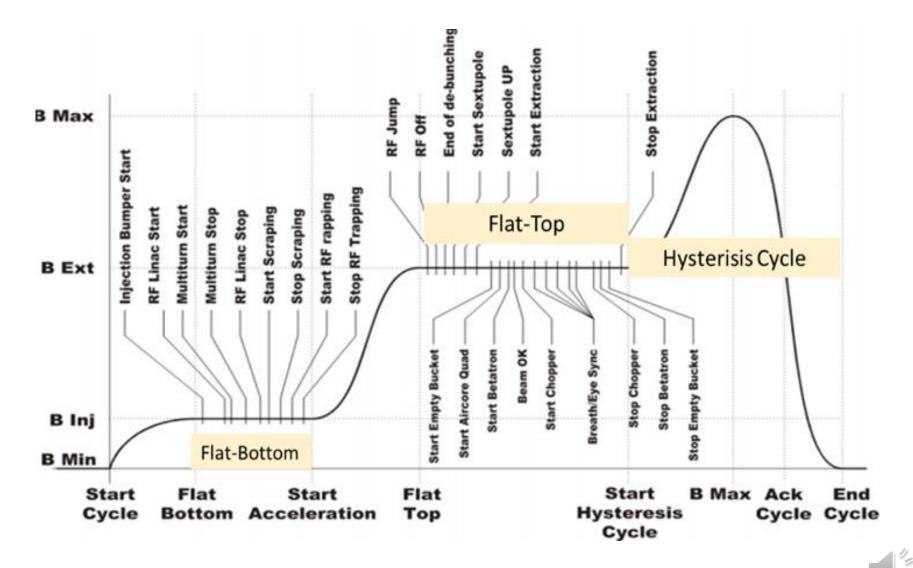
Gantry

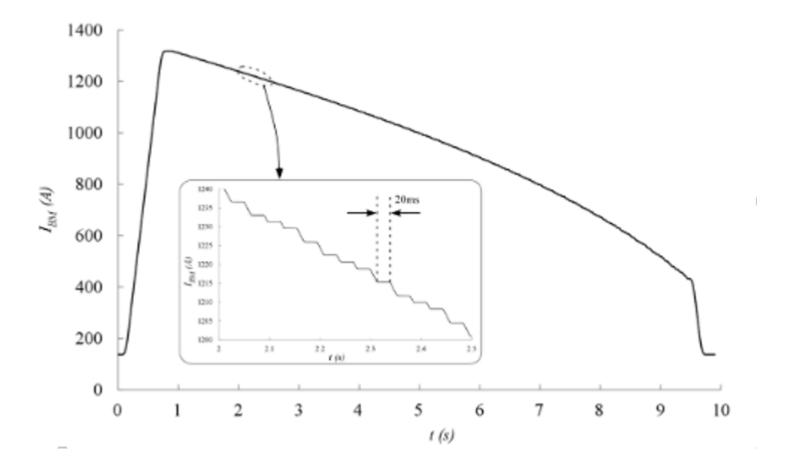
- Support structure for a beam transfer line which allows rotation of the beam around the patient.
 Allows improved distribution of dose.
 - Mechanical movement (electrical, vacuum, magnets etc)
 - Optics stability for all rotational angles
 - Matching beam properties to beam delivery system (x-y scanning magnet etc)

Example Gantry (TERA design)

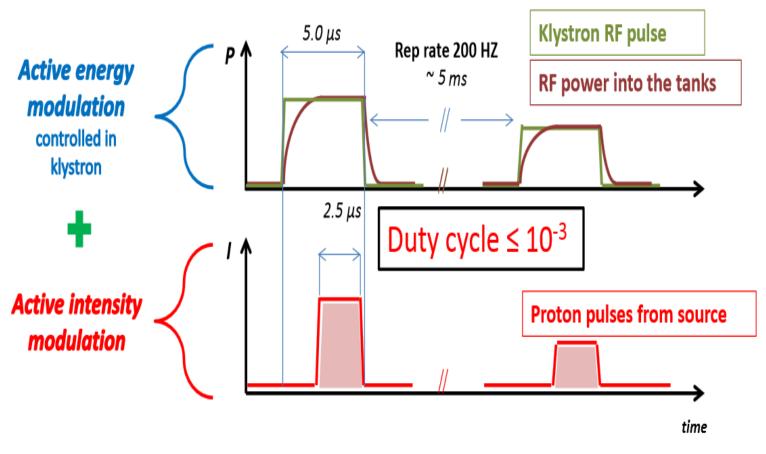
The ½ gantry

- Popularized (PSI ...) to
 - minimize bulk (cost),
 - decrease vault size
 - increase floor space
- Requires rotating the patient by 180 in about 35% of sessions
- Smaller emittance decreases mass very significantly
 - "Old" synchrotron gantries (>100 ton) & required counter weight in a 360 configuration




Beam Energy Variation

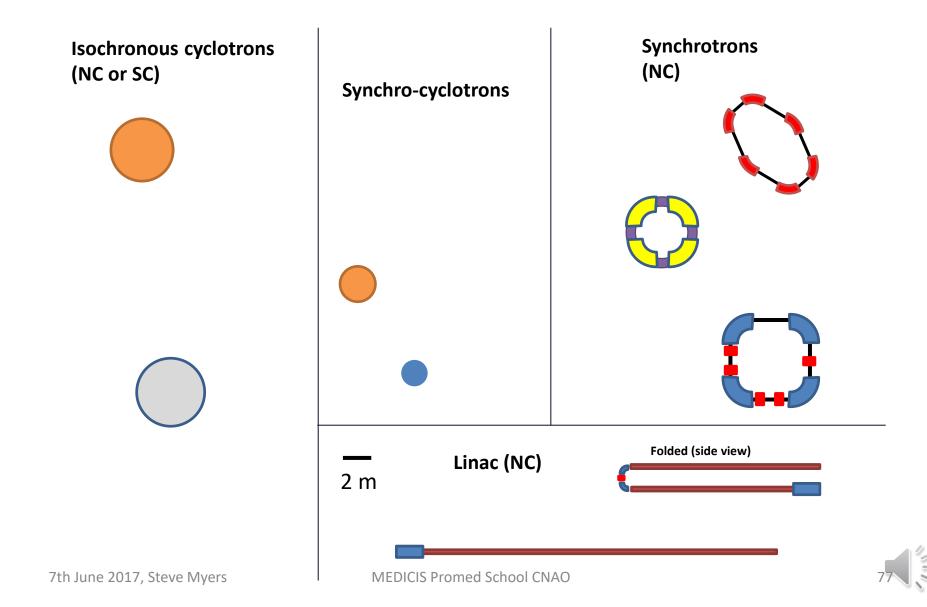
Variable Energy in a Synchrotron at Flat Top



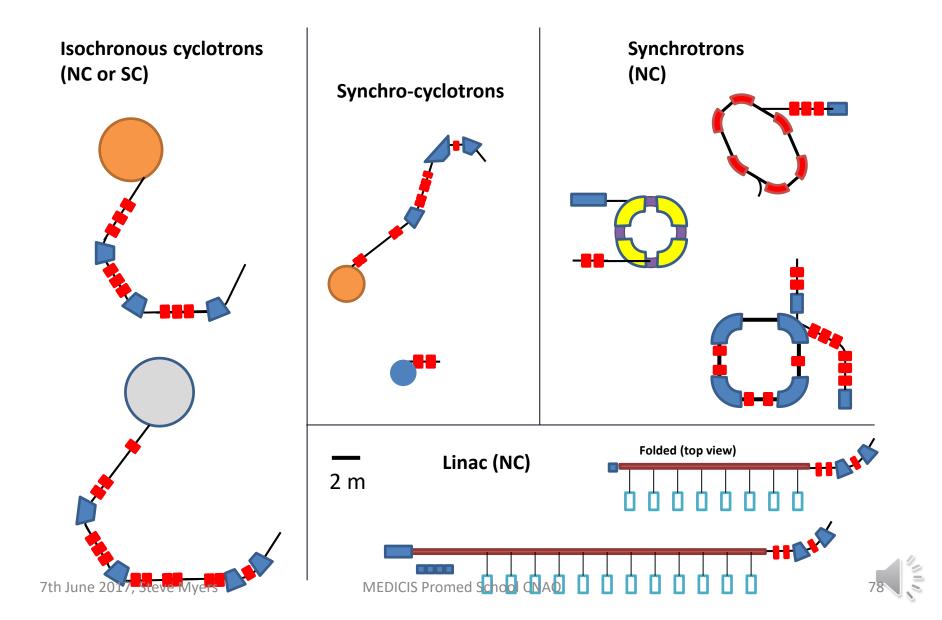
Synchrotrons; Energy Variation with multi flat-top extractions

• (NIRS synchrotron). [NIRSGantry2014]

Linac Active Energy and Intensity Modulation

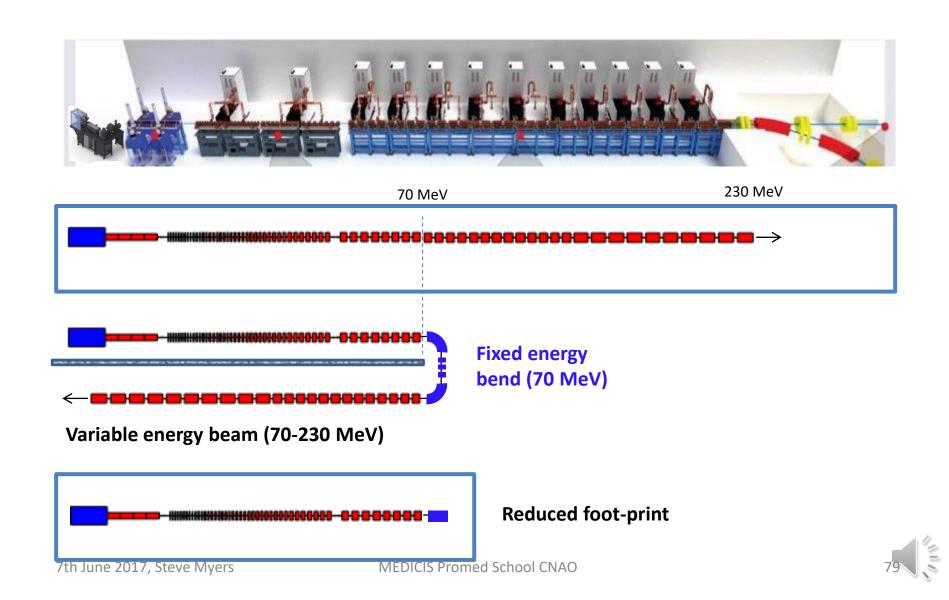


http://indico.hep.manchester.ac.uk/getFile.py/access?contribId=22&resId=0&materialId=slides&confId=4226

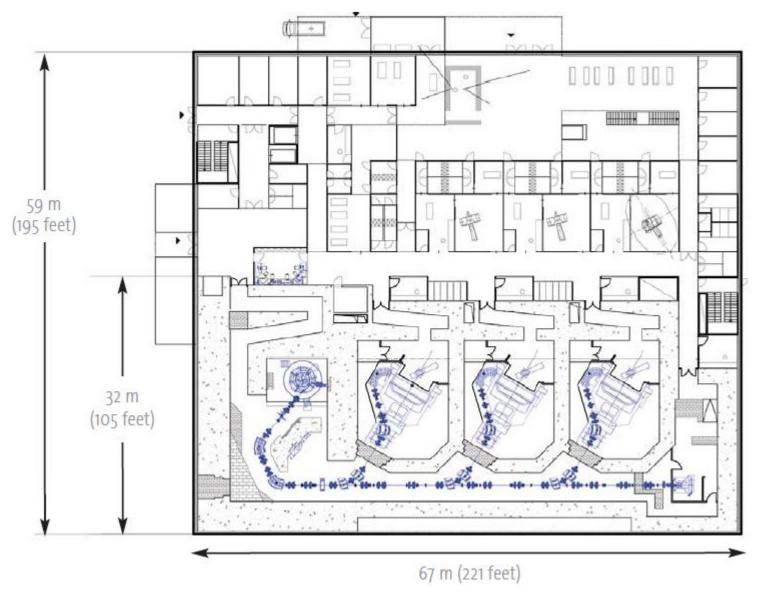


Footprint, modularity and Flexibility

Relative Footprints Accelerator Only



Real Size (with ESS, Inj., Extraction, Klystrons)


Examples of Linac 'Flexibility'

Number of Treatment Rooms

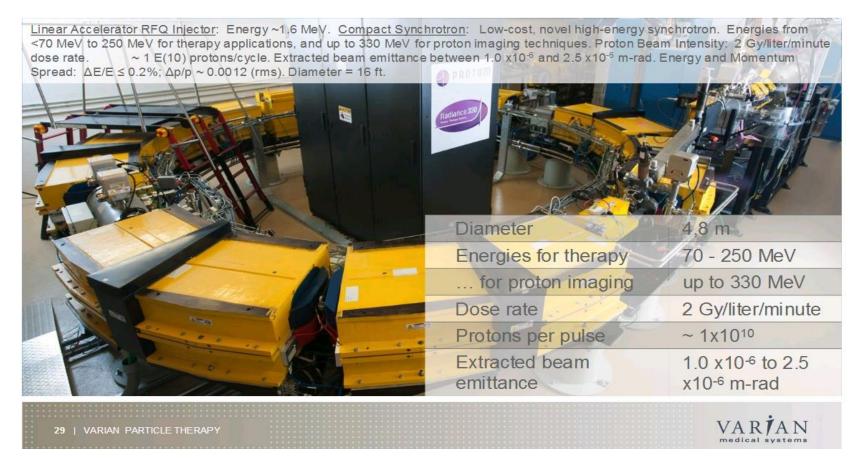
Multi-room Facility... 3-4-5 Rooms?

MEDICIS Promed School CNAO

Shrink Size of Cyclotrons → Super-conducting

Varian SC isochronous cyclotron

Mevion TriNiobium Core SC synchrocyclotron

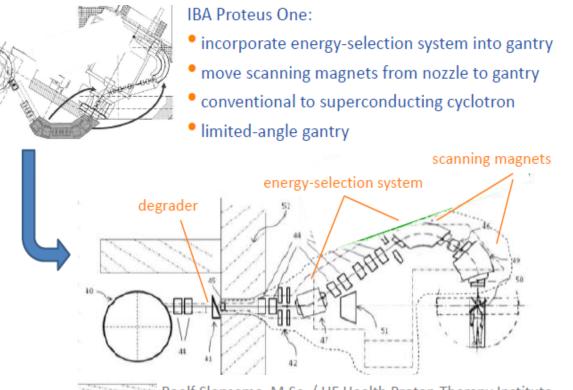

IBA S2C2 SC synchrocyclotron

84

http://www.aapm.org/meetings/2013AM/documents/Sumitomo.pdf

Example of Compact Synchrotron

Linear Accelerator and Compact Snychroton Radiance 330 Proton Therapy System – ProTom International



[Schillo IPAC2014] http://accelconf.web.cern.ch/accelconf/IPAC2014/talks/weib01_talk.pdf

Multi-room vs Single-room Facilities?

- Single room facilities allow:
 - Reduced investment cost
 - Spread of proton therapy in smaller centres
- Cost/room is slightly higher
- In some cases adding second «single room» afterward to increase patient throughput

Roelf Slopsema. M.Sc. / UF Health Proton Therapy Institute

Summary and Conclusions

↓Type/Properties→	Trajectory	RF frequency	Magnetic field	Time structure
Cyclotron	Spiraling	Fixed in time	1 dipole – fixed in time	CW (with RF micro- bunch structure)
Synchrotron	Circular	Varying during acceleration	Several dipoles – increasing in time	CW during spills (limited in time by storage capacity)
Synchro-cyclotron	Spiraling	Decreasing during acceleration	1 dipole – fixed in time	Pulsed
Linac	Linear	Fixed in time	Not needed! (but several high power RF klystrons!)	Pulsed at low duty cycle (10 ⁻³)

Fundamental Parameters due to TYPE of Accelerator

Accelerator type → Parameters ↓	Cyclotron	Synchro-cyclotron	Synchrotron	Linac
Beam Emittances (size) [pi-mm-mrad]	3.0-9.0 (before ESS)	Collimators 3.0-6.0 Radial / 3.0-4.0 Vertical	1.0-2.5	0.25
Energy modulation (variation)	Only with degrader- absorbers	Only with degrader- absorbers	Possible, but slow (now multi flat-top extraction)	By LLRF control
Modularity	1 module (two half dees), internal source, BUT ESS	1-2 large units	Several magnets + 1 RF cavity + injection linac	12 RF units + ~ 80 PMQs
Proton losses, activation	High in ESS (1/E dependent)	High in degrader	Small losses in extraction	Low
Beam time structure	CW	pulsed 1%D.C.	CW during spills	pulsed 0.1%D.C.

Clinical Efficiency Related Parameters

Accelerator type → Parameters ↓	Cyclotron	Synchro-cyclotron	Synchrotron	Linac
Change of energy (speed ms)	80 to 2100	50 to 2000	2000 to 3000	5
"spot" size regulation (σ in air at 230 MeV)	3-10 mm	3 - 8 mm to scatter	Horizontal plane needs 3.0-6.0 mm	< 3, 6 mm
"Spot Dose" regulation (speed)	By timing spent in each voxel	Pulse by pulse, 6e8-1e12 pps	By timing the end of extraction	Pulse by pulse, 2e8-1e11 pps

Financial Parameters

Accelerator type \rightarrow Parameters \checkmark	Cyclotron	Synchro-cyclotron	Synchrotron	Linac
Construction costs (comments)	Shielding and vault opening from roof	Shielding and vault opening from roof	Big surface hall	Corridor-like(small amount of shielding close to linac)
Accelerator electrical power	320 – 1800 kW	100 kW (for superconducting)	100 kW (to 3MW)	~450 kW
Dismantling or re-location costs	ESS degrader activation	Activated degrader	Activated extraction septum	Almost no losses + low duty cycle
Requirements of gantry	80 280 tons 7.2 11.5 m diameter	100 120 tons 7.6 9 m diameter	~125 tons, 8 m diameter	20 – 35 tons (tiny beam size →Small magnets apertures)
System foot print	4 rooms facility: 59x67 m ² 1672 4000 m ²	single room facilities 110 380 m ²	See diagram above	<mark>80 -140</mark> m2

Summary

- The major challenges for particle (proton) therapy
 - Overall system must be affordable.
 - Ideally come down to the price per patient for the top of the range conventional radiotherapy (IMRT)
 - Not only capital cost, but also operational costs and decommissioning costs
 - <u>Spot</u> placement must be precise in 3 dimensions
 - Eventually image guided for movement of tumours
 - Adaptive treatment for volumetric rescanning (increases precision)
 - Fast controlled depth variation: energy modulation of beam
 - Gantry size and cost must be reduced
 - Impervious to Error
 - Integrated system design

Thank you for your attention

7th June 2017, Steve Myers

MEDICIS Promed School CNAO