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ParTICLe

Particle Therapy Interuniversitary Center Leuven
Collaboration between UZL, UCL/CSL, UZG, UZA and UZB
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Clinical beam line Research beam line

Facility setup
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Beam

Depends on incident 
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Radiotherapy Proton therapy





Broad beam (double scattering)

Pencil beam scanning

12

How do we DELIVER protons?
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http://brenthuisman.net/msc/images/passive-beamshaping.jpg

Energy 
modulation

Scattering

Beam 
shaping
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Fixed beam line Gantry

http://www.psi.ch/ImageBoard/ig
p_1024x640%3E_ba192.007.jpg

10 m diameter ! 
(2 m for X-rays)



Broad beam (double scattering)

Pencil beam scanning

15

How do we DELIVER protons?
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Physical scatter foils and compensators 
are replaced by magnets!
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Generalities on treatment preparation and delivery workflow
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Various imaging modalities

CT PET MRI
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Contouring of target volumes and organs-at-risk
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Treatment optimization
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How to assess the clinical quality of the dose distribution?

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

Visual 
inspection of 
3D dose maps

Zhang et al (IJROBP 2010)

Pitfalls
• Huge amount of data to 

visualize
• Hard to think in 3 

dimensions
• Hard to quantify the 

clinical effect
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How to assess the clinical quality of the dose distribution?

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

Cumulative 
dose-volume 
histograms

Castilho et al (Rad. Oncol. 2006)

Pitfalls
• Small hot and cold spots 

hardly visible
• No spatial information
• Dose distributions out of 

pre-contoured structures 
cannot be represented by 
DVHs

= Volumes receiving at least a given dose
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Treatment optimization: manual versus computerized
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acquisition
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Courtesy from T. Depuydt
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Inverse treatment planning
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Courtesy from T. Depuydt
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Treatment preparation and delivery workflow
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Courtesy from T. Depuydt
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Treatment preparation and delivery workflow
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Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

Courtesy from X. Geets

Positioning

TreatmentSimulation

#1 #2 #n

Global	Matching
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Treatment preparation and delivery workflow

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

In-vivo 
dosimetry

Measure the dose in the patient directly 
during treatment delivery (generally on 
the surface)
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Treatment preparation and delivery workflow

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

Machine log-
files

Use measurements made by embedded 
detectors in the treatment nozzle! 
Stored in so-called “machine log-files”
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Treatment preparation and delivery workflow

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

Range 
verification Prompt gamma imaging
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Treatment follow-up

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

• Unacceptable anatomical changes  treatment adaptation

• Early toxicity assesment

• Tumour response

• …
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Treatment plan optimization

Objectives
• Best trade-off between target coverage and organs-at-risk sparing
• Robustness again geometrical and anatomical uncertainties
• Limited treatment time
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Best trade-off between target coverage and organs-at-risk sparing

Probability of 
Tumor Control (TCP)

Probability of 
Normal Tissue 
Damage (NTCP)

Target Dose (Gy)
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Best trade-off between target coverage and organs-at-risk sparing

Probability of 
Tumor Control (TCP)

Probability of 
Normal Tissue 
Damage (NTCP)

Therapeutic 
Effect (A)

Target Dose (Gy)

1.0

0
A  B     

Therapeutic 
Effect (B)

MAX. TOXICITY LEVEL

R
es

p
o

n
se “Increased conformity 

keeps high dose levels 
away from OAR”
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The inverse problem

• The ideal dose distribution might be 
unreachable …

• So, the best clinical result might not be 
possible

• So, compromise … 
(with OPTIMIZATION)

• Try and get the best approximation to 
the ideal dose distribution

• Define treatment goals mathematically with 
a function whose minimum corresponds to 
our definition of the best plan. The name of 
such a mathematical function is 

COST FUNCTION
OBJECT FUNCTION
SCORE FUNCTION

78Gy

0Gy

0Gy

0Gy
0Gy

0Gy

0Gy

0Gy

Theoretical optimum

Achievable solution (photons)

Courtesy from T. Depuydt
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An optimization problem

A simple optimization problem:

“A manufacturer needs to make a cylindrical can that will hold 1.5 liters

of liquid. Determine the dimensions of the can that will minimize the

amount of material used and as such the COST of its construction.”

“The search for the best independent 
variable value which results in minimal cost”

start

Minimise A =
3000

r
+ 2pr2

Courtesy from T. Depuydt
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Describe the inverse problem to a computer

Courtesy from T. Depuydt

Physical dose 

 Target coverage (min, max, …)

 Target homogeneity

 OAR exposure (max, …)

 Surrounding tissues

 …

Biological effect

 TCP, NTCP

 EUD

 …

DVH constraints

Constraints/Goals

“… are constraining 
the optimization”

“Non-constrained tissue means 
freedom for the optimizer to put

undesired dose there”

target

“Subdivide into different preferably
non-overlapping volumes 

and relate to dose constraints”

OAR
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se
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Cost function

Courtesy from T. Depuydt
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Penalty for not having 
uniform dose d0

(optimising uniformity in target)

Penalty for any dose 
to OAR (minimising the 

mean of the OAR)

Penalty for dose above 
“tolerance dose d0 “ in OAR 
(keeping max dose below d0)

 Is the relative 
weight factor

H(x)

“Combining all sometimes competing goals in 
one cost function …”

http://de.wikipedia.org/w/index.php?title=Datei:Heaviside.svg&page=1&filetimestamp=20091026135854
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Optimization of spot weights

Niek Schreuder
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Optimization of spot weights

Courtesy from T. Depuydt
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Optimization of spot weights

Safai et al (PMB 2013)

Final dose

Beam 1 dose Beam 2 dose



Structures 

and 

Constraints

Optimization 

DVHs

Field Intensity Map

Optimization 

progress,

Cost-function

Highest 

cost



Change of weights 

change the 

optimisation

Add a 

constraint
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This is all nice but...

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

CT

The whole process assumes that the images acquired are a 
faithful representation of the anatomy during the entire course of 
the treatment 

This is not true:
• Patients are not positioned all the time the same way
• Breathing motion is not stable
• The position of the targets and the organs-at-risk may 

change one relative to another (organ filling)
• The morphology of the patient may change in general 

(weight loss, tumour shrinkage)
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Morphological modifications

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up

Pre-RT Week 3 Week 5
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Breathing

Image 
acquisition

Manual
contouring

Treatment
optimization

Treatment
validation

Treatment
delivery

Follow-up
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How to ensure that the target is covered despite geometric 
uncertainties?

CTV

To make sure we irradiate 
the Clinical Target Volume…

PTV

CTV

We irradiate a larger volume, 
the Planning Target Volume

PTV safety margin



49

CTV-PTV margin?

Systematic errors

Random errors

Assumes shift invariance 
of the dose distribution 
in ALL directions!!!

The CTV “navigates” in a 
stable dose distribution

𝒎𝑃𝑇𝑉 = 2.5𝚺 + 0.7𝛔



Beam



Beam

2cm 
air gap

Range 
uncertainty
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Range uncertainties due to image conversion into stopping powers

Hounsfield Units
(photon attenuation)

Conversion

Map of stopping powers

Uncertainties
• Image noise
• Tissue assignment? (Fat, bone, muscle, skin…)
• Tissue composition
• Conversion of a known composition to stopping powers

Total uncertainty of a few % !
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Day 0 Day 35
From Lomax

Range uncertainties due to anatomical changes
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Range uncertainties due to breathing
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Range uncertainties due to dose calculation errors

Paganetti (2012)

Bad algorithm Good algorithm



How do we account for range uncertainties in proton therapy 
treatment planning?

In proton therapy, the dose distribution is not stable

Thus the fundamental hypothesis of PTV margin recipes are not valid
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Beam specific PTV (Single Field Uniform Dose (SFUD))

• Lateral margin is calculated similarly to photon PTV

• Proximal/distal margin are calculated to compensate for range variations:
• Motion
• Setup error
• Stopping power uncertainties

ITV

BSPTV

210° 150°

From Souris



58

Beam specific PTV (Single Field Uniform Dose (SFUD))

DOES NOT WORK for multi-field optimization !
(IMPT - pencil beam scanning)

From Souris

ITV

BSPTV

210° 150°



IMPT (PBS)  robust optimization

Optimize 
dose

Compute 
several 

"scenarios”

Setup errors
Breathing motion
Base line shift
Physical Range errors

Clinical 
objectives and 
constraints

Worst-case

Probability 
threshold

Compute 
beamlet

doses



Effectiveness of robust optimization

From Van Dijk et al (Plos One 2016)
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Treatment verification

TPS

Plan Delivery

Phantom

model

OK        not OK

Hybrid plan calculation

Patient model

Treatment plan

Proton gantry

V
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a
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?

Comparison

Courtesy from T. Depuydt
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MatrixXPT:  

▸ 1020 vented parallel plate chambers with a 7.6 mm center-to-center spacing 

between chambers, arranged in 32x32.  

▸ 2mm plate spacing to reduce ion recombination (w.r.t. 5mm in Evolution). 

▸ 6mm ABS (acrylonitrile butadiene styrene) buildup on top of detector array

PSQA MEASUREMENTS: MatrixX-PT and DigiPhant

• One measurement per field (2 fields = 2 measurements) 

• Depth of the detector at Mid-SOBP. 

• All measurements @gantry 0̊  and detector at Mid-SOBP. 

Hybrid plan calculation

Experiment

Dose 
calculation



DEALING WITH IMAGE RESOLUTION AND INTERPOLATION

▸ Simulation on the original 

CT image size 

▸ Simulated map smoothed 

(gaussian smoothing with 

σ= res/2) 

▸ i nterpol at i on of the 

smoothed map.

# pixels

#
 p

ix
e

ls

MCSqaurePlanMatrixX MCSqaurePlan - MatrixX

Experiment

Dose 
calculation

DEALING WITH IMAGE RESOLUTION AND INTERPOLATION

▸ Simulation on a “blurred” CT 

image: image downgraded to 

same resolution as in 

measurements (7.6 mm). 

MCSquare simulation performed 

on the new low-res image. 

▸ No need to smooth and interpolate  

MatrixX MCSqaurePlan MCSqaurePlan - MatrixX

# pixels



DEALING WITH IMAGE RESOLUTION AND INTERPOLATION

▸ Simulation on the original 

CT image size 

▸ Simulated map smoothed 

(gaussian smoothing with 

σ= res/2) 

▸ i nterpol at i on of the 

smoothed map.

# pixels

#
 p

ix
e

ls

MCSqaurePlanMatrixX MCSqaurePlan - MatrixX

Experiment

Dose 
calculation

DEALING WITH IMAGE RESOLUTION AND INTERPOLATION

▸ Simulation on a “blurred” CT 

image: image downgraded to 

same resolution as in 

measurements (7.6 mm). 

MCSquare simulation performed 

on the new low-res image. 

▸ No need to smooth and interpolate  

MatrixX MCSqaurePlan MCSqaurePlan - MatrixX

# pixels

DEALING WITH IMAGE RESOLUTION AND INTERPOLATION

▸ Simulation on the original 

CT image size 

▸ Simulated map smoothed 

(gaussian smoothing with 

σ= res/2) 

▸ i nterpol at i on of the 

smoothed map.

# pixels

MCSqaurePlanMatrixX MCSqaurePlan - MatrixX



67

In vivo range verification



 Most direct verification of the 
stopping power values of the 
tissue

 Compared to x-rays: 

better contrast, 

lower dose 

but poorer spatial resolution
(due to MCS)

 Investigated since late 1960s 
(Koehler 1968), but both 
technical and financial 
challenges

68

Proton radiography



Intended application: 

Measurement of the position at 

which the proton beam stops 

in the patient in PBS mode

Target performance: 

Instantaneous verification with an

accuracy better than half the distal

margin for a selection of critical 
spots

Points of attention:

Simplicity, cost effectiveness

Prompt gamma imaging (IBA solution)
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First report of clinical usage of prompt gamma imaging for PBS



• Proton therapy (and hadron therapy) is promising

• There are planning and verfication tools to help fulfilling their 
potential 

• Their integration in clinical practice requires multidisciplinary 
research and streamlined workflows

72

Conclusions



Thank you!
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