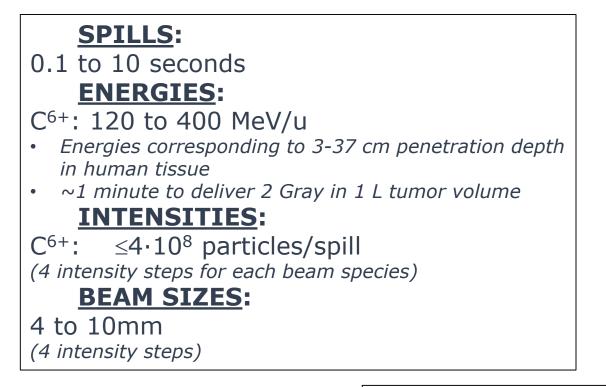
Design of a PET-isotope-based hadron therapy facility

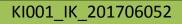
L. Penescu

Workshop at the MEDICIS-PROMED Summer School

4-11 June 2017, Fondazione CNAO



¹²C treatment specifications Existing Carbon facilities Challenges for ¹¹C treatment Workshop methodology Fun

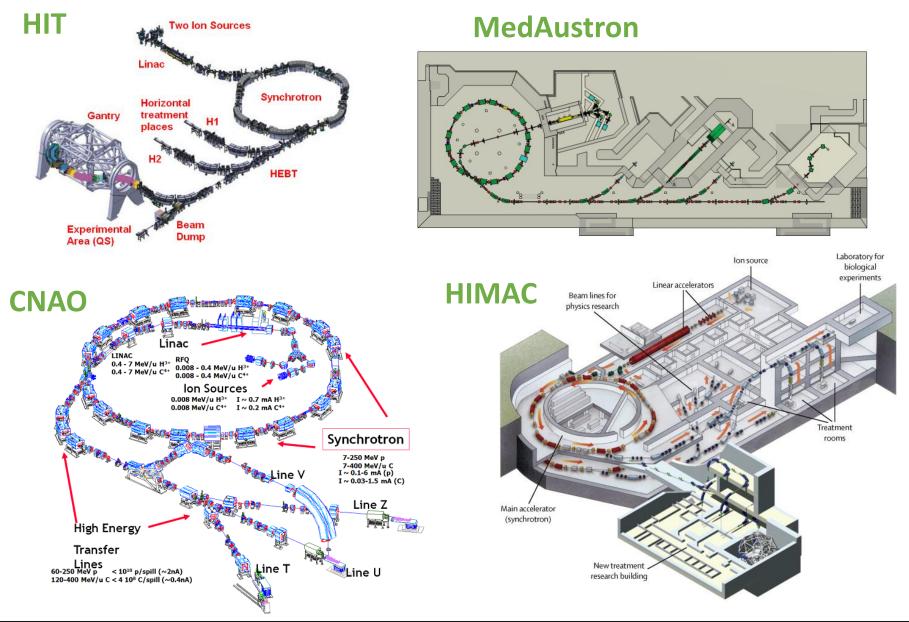

¹²C treatment specifications

QA VERIFICATION (at irradiation room)	TOLERANCE LEVEL
Position	± 0.5mm
Size (FWHM)	MAX {±1.0mm; ±10%}
Intensity	±30 %

✓ **Spill formation**: defined in the synchrotron

- o Duration.
- Intensity uniformity.
- Position uniformity.
- Spot formation: defined in the HEBT line
 - Spot size
 - Position at isocenter
- ✓ Restrictions on injector: not critical
 - Most of the injected beam limitations can be corrected in the synchrotron

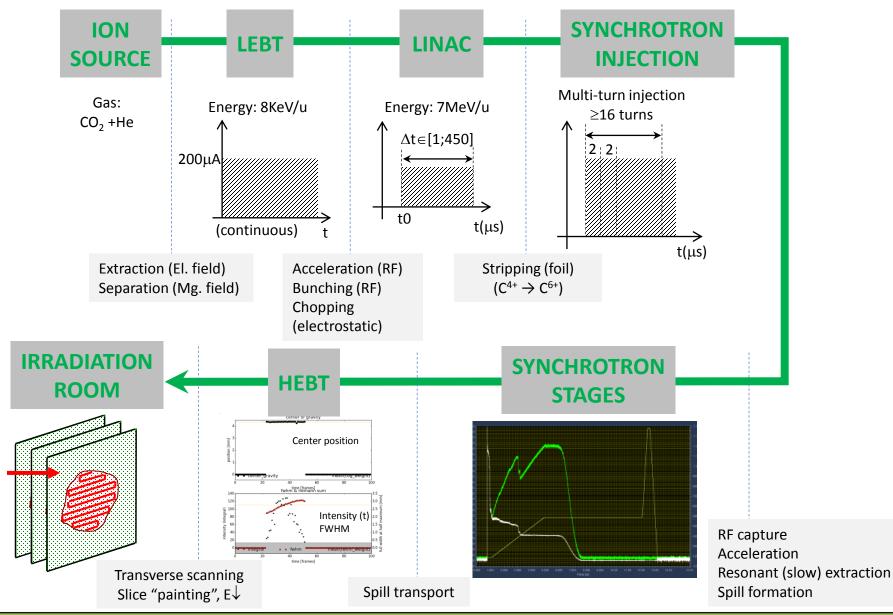
Solid ground


for Science

Landscape

Abstract

Existing Carbon facilities



L. Penescu

KI001_IK_201706052

Operation scheme - MedAustron

L. Penescu

KI001_IK_201706052

Challenges for ¹¹C treatment

Design recipe:

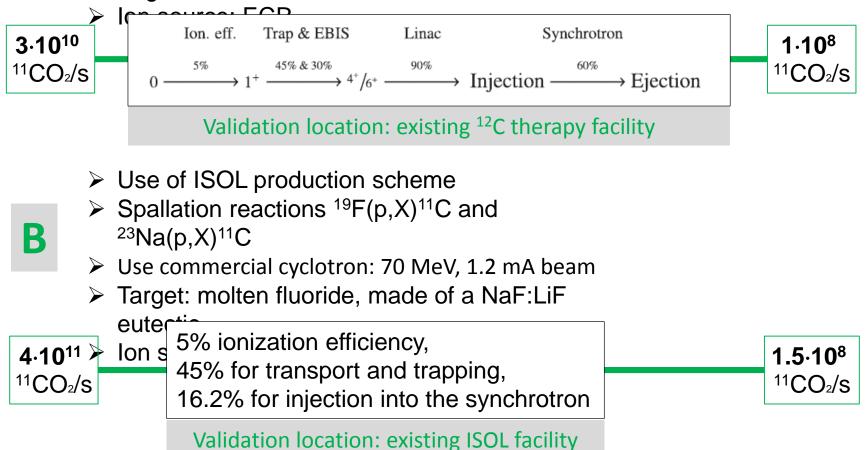
- ✓ Production
- ✓ Accumulation
- ✓ Acceleration
- ✓ Delivery

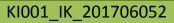
Challenges for ¹¹C

- > PRODUCTION
- > ACCUMULATION

Options for PRODUCTION

- Batch releases ¹¹C molecule to ion source
- ISOL production
- In-flight production
 - Fragmentation (e.g. ¹²C beam on ⁷Be target)
 - Fusion-evaporation (low beam energy)


Options for ACCUMULATION


- Batch containing supply atoms
- 1+ ions accumulated in a trap
- 6+ ions accumulated in a ring

Design baseline

- Use of compact PET cyclotron
- ➤ 10-20 MeV protons
- > 30 GBq batches can be produced every 30 min
- Reaction: ¹⁴N(p,α)¹¹C in high pressure N₂ targets

Workshop methodology

Information structure

"DOMINO model" for all components

Acceptance	Performance	Output		
Min/max valuesCharge stateIntensityTimeEnergy	Efficiency Time structure Operation steps (Operation modes) Limitations Risks	 Charge state Intensity Time Energy 		

SPARK: We have experts among us! **GAS**: The "stupid questions" are welcome!

Simon

Annie

Johanna

KyungDon

- \rightarrow Production and mass separation of ¹¹CO⁺
- \rightarrow Molecular breakup in RFQ cooler
- \rightarrow Charge breeding scheme
- → Treatment planning for ¹¹C

Method	Cyclotron		Target	Reaction	In target production	Trap charging time	Injector	Injector repetition rate
	E [MeV]	I[μA]			[pps]	(ms)	[p/injection cycle]	[Hz]
PET production (production batch)	22	150	N₂ (≤1 atm)	$^{14}N(p,\alpha)^{11}C$	3×10^{10}	741	1.5×10^8	1,3
REX-ISOLDE (ISOL)	70	1200	NaF:LiF eutectic	¹⁹ F(p,2αn) ¹¹ C	4×10^{11}	56	1.5×10^8	18

Advanced considerations

Quality assurance of the design:

- Reliability of the used numbers;
- Constraints related to safety, vacuum, performance stability, measurement precision, operation
- Resource redundancy

Quality assurance of the performance:

Important points to monitor

Stability and reproducibility

The accelerator is able to generate:

- ✓ Number of different energies: 255
- ✓ Number of beam sizes: 4
- ✓ Number of intensities: 4
- ✓ Number of extraction times: 8
- Beam combinations per beam line: 32640

Are we happy with the ¹¹C?...

And with the baseline?