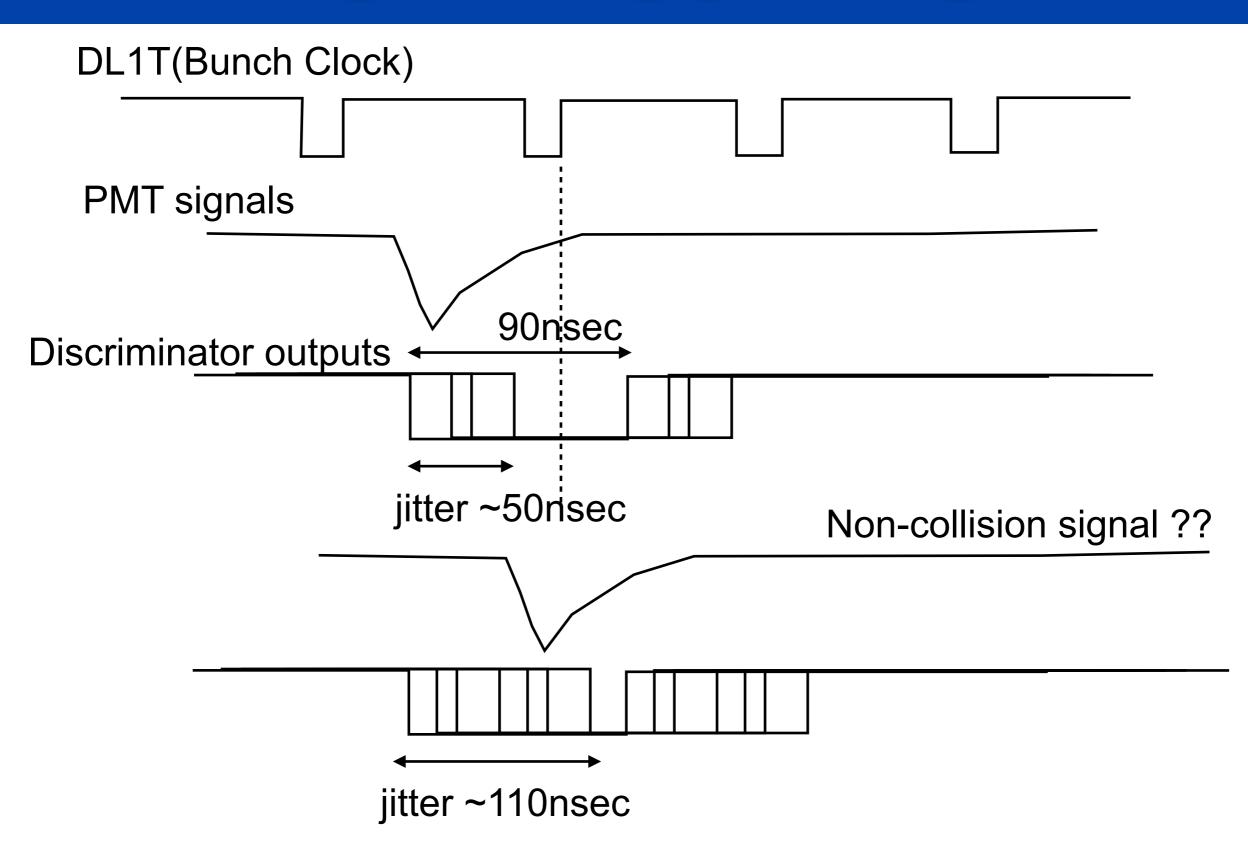
DAQ status and TODO

RHICf meeting, April 4-5, 2017, Nagoya

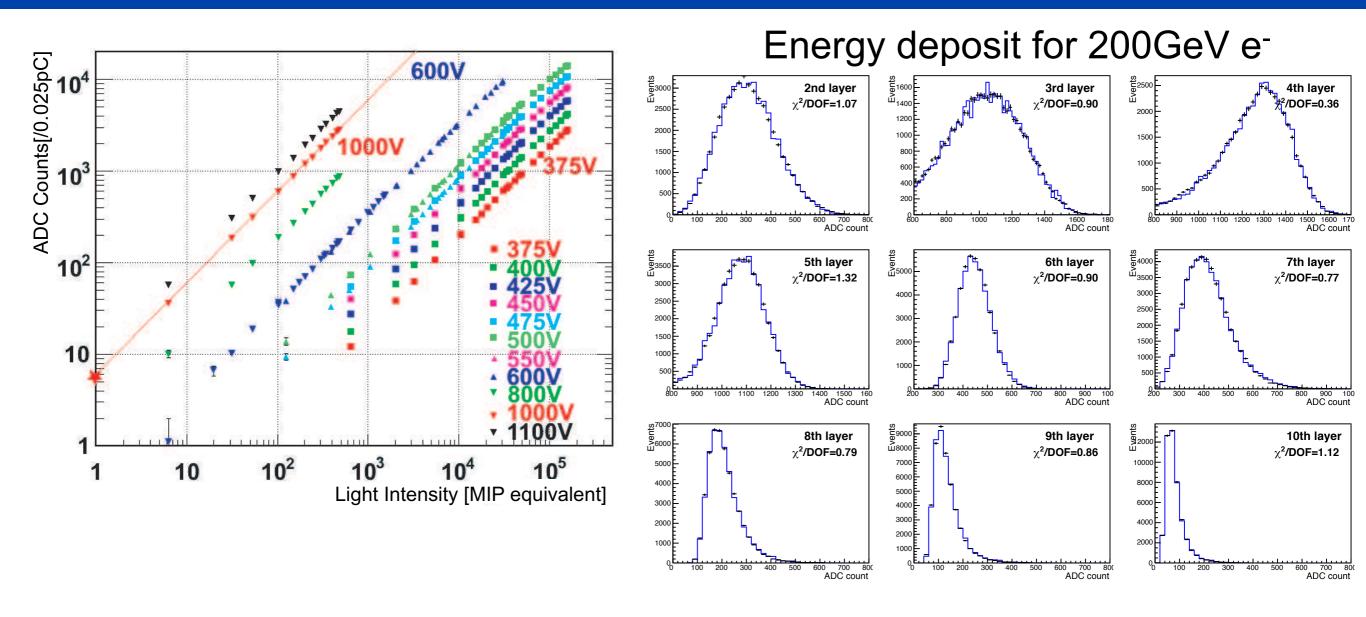
To do in 2016-Oct


DAQ

- FPGA logic (Zhou, sato)
 - Detail checks of trigger modes, counters and flags (Nov.)(Feb, Sato)
 - Additional counters for each bunch ID. (Nov.->Feb, Zhou, Menjo)DONE in Feb>>.
 - ↔ Modification of Trigger detection with FIFO (Feb., Sato) DONE in Feb.
- Site preparation (Sako)
 - Rack (STAR)
 - Support structure of the patch panel (BNC-Lemo) (Nov.) DONE in Nov.
 - Network configuration under the STAR DAQ network. (Nov.) DONE in Nov.
 - Measurement of noise and optimization of discriminator threshold. (Nov.)
- Operation condition
 - Fix the H.V. configuration
 - Operation plan
- Software works of MIDAS system (Nov., Junsang, Minho)
 - Frontend: Dummy event generator
 - Modification of analyzer
 - Modification and confirmation with Tonko (un control and analyzer)
 - Setup of Event Display
- Common operation with STAR
 - Communication test with STAR (Nov., Menjo, zhou)
 - Determination of most probable latency from collision to trigger production
 - Turning of latency with beams (Jan-Mar)
 - On-line monitoring on the STAR system. (Nakagawa, Minho)
 - Quick asymmetry analysis (Nakagawa, Minho)
- Slow-Control (Mar.)
 - Monitoring tool for keithley (temperature) (Junsang)
 - Monitoring tool for CAEN mainflame (H.V. and L.V.)
- Others
 - Attenuators for USB oscilloscope (Nakagawa)
 - Modification of the LED module for increasing light amount. (Nov, Nakagawa & Minho)
 - Test with LED by the MIDAS system (Nov., Zhou, Sato, Minho)
 - Special module V124 for getting RHIC beam information (Goto)
 - Offset adjustment of preamp and FANOUT (Sako)
 - Length of coaxial cables and resistance of DC power cables DONE on 3 Nov.

Status (RHICf standalone)

- Since Nov. 2016
 - Upgrade of FPGA logic DONE
 - Implementation of Dummy orbit signal (Dummy Bunch-ID).
 - Counters of shower-trigger signals for each Bunch-ID.
 - Programable dummy trigger generator.
 - Modification of the frontend software. DONE
 - Tuning of trigger signals Panically done
 -> See the next slide.
 - □ FEC problem
 - LED setup Panically done
 - Slow Control Panically done
 - Control and Monitor of the Keithlay module for measurement of temperatures and setup of MAPMT H.V.
 - Optimization of FANOUT offsets. DONE


Tuning of trigger signals.

To-Do for RHICf standalone

- Complete remaining homework.
 - Tuning of trigger signals.
 - SlowControl system
 - Logger of CAEN power supply.
 - Control of the CAEN power supply.
- Define the operation conditions
 - Threshold of the discriminators
 Input: Trigger rate by electric noise.
 - H.V. of PMTs and MAPMTs
 Input: the HV-gain tables and the requirement of trigger efficiency.
 - Trigger mode
 Input: Required statistics for physics cases.
- On-line/Off-line monitor system.

HV and Threshold

Discriminator Threshold = 10 (-20mV) -> ~ 200 ADC counts

Trigger mode

Possible trigger modes

Only three trigger modes can be implemented due to the limitation of FPGA logic.

- Shower trigger
- \Box π^0 type 1 enriched trigger
 - Shower in 1-7 layers
 - Two towers coincidence.
- High energy EM trigger
 - Increase the discriminator threshold of one of the layers
- Large tower trigger

MC simulation studies are needed for estimate the performance and the rate.

DAQ for common operation

- Since Nov. 2016
 - Upgrade the FPGA logic. DONE
 - Implement FIFO for managing non-RHICf token signals.
 - Tuning signals for common operation. DONE
 - Delay in RHICf trigger signals
 - Tune for token recode in RHICf DAQ
 - Software preparation for sending RHICf data. DONE
 - Implementation of Analyzer_ToStar.
 - Common operation test with STAR. DONE
 - Control RHICf run start/stop from the STAR DAQ.
 - Read the RHICf data stored in the STAR disk. DONE

Ready to take data with STAR

To-Do for common operation.

To-Do

Define the operation mode with STAR.

- Proposed plan by STAR
 - 1. <u>RHICf triggers with diffractive trigger in STAR (~100Hz)</u>
 - -> Recode STAR TPC

Simple pre-scaling down of RHICf trigger

- 2. RHICf triggers (the others)
 - -> Not recode TPC
- 3. Non-RHICf trigger (~1.2 kHz)
 - -> No Token is distributed to RHICf.

=> Operation of STAR with the DAQ-full bandwidth will include 10% dead time in STAR DAQ. So 10% of RHICf triggers will not be recoded in STAR.

- On-line/Off-line monitors for event matching between RHICf and STAR.
 - By header information, Token, bunch ID, and counters(BC counter reseted by STAR run start).
 - By physics values, exp. correlation between RHICf and ZDC/BBC

Others

- Debug of Scaler signals in STAR
 - We send some signals to STAR. They are counted in STAR DAQ with combining with the bunch-ID information.
 - We sent 3 signals+empty in 4 lines.
 We saw counts in all "4" channels.
- Remote control of a oscilloscope.
 - Install a laptop for controlling it by USB connection.