Storage Challenges in Ocean Modeling

Symposium of the Center for Network and Storage Enabled Collaborative Computer Science

Brian K. Arbic, University of Michigan

May 19, 2017

Outline

- Animations
- My background working in Africa (it's relevant; you'll see...)
- Motivation for ocean modeling
- Scale of storage problem
- Example science results
- Examples of network- and storage-enabled collaborations
- Relevance of network- and storage-enabled collaborations for science in Africa

Animations

Joseph Ansong and **Brian** Arbic in 1992

UNIVERSITY OF MICHIGAN

Brian Arbic

Motivation: Why model the ocean?

- Inherent fascination
- Complement to in-situ and satellite measurements
- Impact on atmosphere on wide range of time scales
- National security
- Fisheries management
- Impacts of sea level rise, storm surges, etc. on coastal towns and cities

The scale of the storage problem

- Ocean variability spans spatial scales from ~1 mm (the dissipation scale) up to basin scales.
- The number of spatial degrees of freedom is about 1.33*10¹⁸ m³ (volume of the ocean)/1 mm³ ~ 1.33*10²⁷
- Ocean variability spans timescales from ~1 ms (acoustic timescales) to 4.6 billion years (the age of the earth)→ about 1.4*10²⁰ temporal degrees of freedom
- There are seven dynamical variables in ocean models
 - Three components of velocity (u,v,w)
 - Temperature T, Salinity S, Density ρ
 - Pressure p

The scale of the storage problem

 An "ultimate" computer that could simulate all of these scales would require ~5 * 10³³ petabytes of storage.

• That's assuming single precision output.

• CPU and memory demands would also be considerable.

Some less fanciful examples

- HYCOM (HYbrid Coordinate Ocean Model) and MITgcm (MIT general circulation model) output is being used by the US Navy and NASA for operational and satelliteplanning applications.
- These two simulations are unique in that they contain tidal and atmospheric forcing concurrently.
- High-resolution HYCOM experiments:
 - One year of hourly output at ~4 km, 41 vertical layer resolution is ~0.5 petabytes
- High-resolution MITgcm experiments:
 - One year of hourly output at ~2 km, 90 vertical leve resolution is ~3 petabytes

Another twist: Ensembles

- Due to chaos, ensembles are often used to forecast the ocean.
- The current Navy prediction system requires ~260 TB of model output to be stored every day, just to launch the next forecast.
- Problem will get worse when horizontal and vertical resolution is increased.

Example science results...

Comparison of barotropic tides in early HYCOM solutions to satellite altimeter-constrained TPXO model (Shriver et al. 2012)

Figure 2. Amplitude (cm) of M_2 surface tidal elevation in (a) TPXO7.2 (an update to that described by *Egbert et al.* [1994]), a barotropic tide model constrained by satellite altimetry, and (b) HYCOM simulations in which the tide is unconstrained by satellite altimetry. Lines of constant phase plotted every 45° in Figures 2a and 2b are overlaid in white.

Comparison of internal tides in early HYCOM solutions to along-track altimetry (Shriver et al. 2012)

Impact of damping on low-mode internal tides (Ansong et al. 2015)

AGU Journal of Geophysical Research: Oceans

10.1002/2015JC010998

Figure 5. Amplitude (cm) of M_2 internal tide in (a) along-track altimeter-based analyses, and in HYCOM simulations (b) E051; with wave drag (scale factor = 0.5) applied to the bottom flow, (c) E058; with wave drag (scale factor = 1.0) applied to the bottom flow, (d) E059; with wave drag (scale factor = 1.0) applied to only the barotropic flow, (e) E053; without wave drag, (f) E055; without wave drag but with quadratic bottom friction increased by about 100 times along the continental shelves. The amplitudes of the HYCOM simulations are computed from 3 months of SSH output.

Demonstration of an internal gravity wave spectrum in HYCOM in North Pacific region (Müller et al. 2015)

Kinetic energy frequency spectrum HYCOM KE frequency spectra at 38.95° N, 185.08° E 10⁴ 10² 10⁰ Mooring 10⁻² ΙI. L L HYCOM 1/12.5 11 HYCOM 1/25 111 10 10⁻² 10^{2} 10^{0} ω (rad/day)

Kinetic energy frequency-horizontal wavenumber spectrum

Vertical wavenumber-frequency spectrum in observations vs. MITgcm vs. HYCOM (Ansong et al., in preparation)

- My own students and postdocs, as well as many collaborators across the world, want access to these simulations.
- The Navy simulation output is held on restricted access computers.

 How does one solve this problem of networkenabled collaborations?

Examples of network- and storageenabled collaborations

- UM students/postdocs obtain security clearance→Analyze HYCOM output on Navy computers
- UM students/postdocs obtain account on NASA machines→Analyze MITgcm output on NASA computers

Examples of network- and storageenabled collaborations

- Collaborate with scientists at SciNet→Run and store MITgcm simulations on their supercomputer
- HYCOM output \rightarrow OSiRIS \rightarrow The world
 - Collaborators on Navy projects
 - Collaborators in Germany
 - Collaborators from SRI in Ann Arbor

Relevance for science in Africa

- Marine issues are important for every continent.
- The global ocean needs to be measured globally.
- But there aren't many oceanographers in Africa, and African scientists are not well represented in global oceanography conferences.

Relevance for science in Africa

- I know of only one large computer cluster in sub-Saharan Africa (outside of South Africa).
- How can the brainpower of ~1/6th of the world's population be harnessed to help us solve scientific problems that require large supercomputers and storage silos?

ANSWER: Network- and storage-enabled collaboration!

Relevance for science in Africa

- Joseph Ansong will return to Ghana as a faculty member in mid-July.
- Access to cutting-edge storage facilities would allow his students to write publishable papers based on analysis of cutting-edge simulations, at minimal cost.

Summary

- Ocean modeling is a big problem.
- Storage is a big problem for ocean modeling.
- Network- and storage-enabled collaborations are of central importance to the ocean modeling community.
- Network- and storage-enabled collaborations would allow African scientists to participate in the global scientific enterprise at an affordable cost.

