

HEP-CS: Machine Learning and Algorithms

Sergei V. Gleyzer

University of Florida

S2I2 HEP-CS Workshop May 3, 2017

Machine Learning Session

- Machine Learning and Algorithms
 - Google Doc
- Participants:
 - 50/50 HEP/CS
- Introduction
 - Challenges and Current Applications

Ideas, directions and questions

Current Applications

- Particle Identification
- Pattern Recognition (tracks)
- Searches for New Physics
- Data Quality Monitoring

- Image Techniques
- Deep Learning
- Energy/Momentum Regression

ML Applications

Tracking

Fast Simulation

Object Identification

Imaging Calorimetry

Trigger

Lightning Talks

Variety of subjects:

- New Trends in Machine Learning
- Pattern recognition for Tracking (2)
- ML Applications in Networking and Data Management (2)
- End-to-End Reconstruction and Classification with ML

Lightning Talks

Variety of subjects:

- Optimization of ML for Physics
- New Algorithms (Probabilistic and Inference)
- Machine Learning in Simulation
- Machine Learning as a Service
- Industry Perspective

Tracking Algorithms

Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

2nd S2I2 HEP/CS Workshop May 2, 2017

G. Cerati⁴, P. Elmer³, S. Krutelyov¹, S. Lantz², <u>M. Lefebvre³</u>, M. Masciovecchio¹, K. McDermott², D. Riley², M. Tadel¹, P. Witticl F. Würthwein¹, A. Yagil¹

- 1. University of California San Diego
- 2. Cornell University
- 3. Princeton University
- 4. Fermilab

ML for Tracking

Open ML Questions for S212 ML4PR

How to train on sparse images?

Incorporate tracking priors?

Through feature engineering? Constrained training?

How to interpret network behaviour? Stability against e.g. miscalibrations?

P. Calafiura

DNN performance (bandwidth, latency, scaling)

DNN optimization ("zipping", weight precision)

DNN hardware deployment (FPGAs and dedicated)

Key Developments from the HEP Side: Machine Learning, Modeling, Game Theory

- Applying Deep Learning + Self-Organizing systems methods to optimize LHC workflow
 - Unsupervised: to extract the key variables and functions
 - Supervised: to derive optima
 - Iterative and model based: to find effective metrics and stable solutions [*]
 - Reinforced: according candidate metrics
- Complemented by modeling and simulation; game theory methods [*]
- Progressing to real-time agent-based pervasive monitoring
- Application to CMS Workflow

[*] T. Roughgarden (2005). Selfish routing and the price of anarchy

Self-organizing neural network for job scheduling in distributed systems

H. Newman

Exploring End-to-End Deep Learning for Event & Object Classification

Michael Andrews^{1,2}, Manfred Paulini^{1,2}, Sergei Gleyzer^{1,3}, Barnabas Poczos⁴

¹CMS, ²Carnegie Mellon University-Physics, ³University of Florida, ⁴Carnegie Mellon University-ML

S2I2 HEP/CS Workshop, 2017-MAY-02

UF End-to-End Deep Learning

Photon-Induced EM Shower

mean energy distribution over 10k events

	Fully-Connected Shower Shape Variables	Fully-Connected Flattened Image	CNN Stacked Images	CNN+LSTM Image Sequence
ROC AUC	0.708	0.770	0.806	0.799

Simulation

- One of the features HEP may be able to offer is we have very large, very high quality simulation sets.
 - Untold hours of effort have been devoted to making our simulations both very realistic and very detailed.
 - This is a rich playground not only for physics, but for algorithm development - it is possible to take slices of simulation that are very complex and hide and show relationships at a wide variety of levels.
 - And we have a lot of simulation! Plus huge simulated sets from different versions of our physics models...
 - We are very worried about domain differences between our data and our simulation. How do we manage this?
 - There are, of course, a lot of tricks for managing bias in training, but quantifying it is crucial for us.

G. Perdue

Meghan Kane meghaphone.com

Software Engineer @ SoundCloud 📍 Berlin 🚄

Math, CS @ MIT, 2012 👼 💻

Code Quality

Testing (lots): infrastructure, coverage, and education CI: each codebase can have its own Monitoring: make it easy to see health of systems - prometheus, dashboards, slack integrations, downtime as KPI, track on-call incidents Tech debt: needs to be prioritized Learn from mistakes: post mortems, no blame culture

M. Kane

How Did (Do) We Get Here (There)?

- Occam's razor: valuing simplicity & scalability
- working smart > working hard
- learning from peer companies
- connecting with Open Source Community
- postmortem culture, transparency
- investing in internal learning & development

Upskilling & Enabling Innovation

people problems are harder than technical problems

- short term: keep existing systems running
- medium / long term: upskilling people so that we can tackle the problems more elegantly and dynamically

how do we do it && stay current with industry & academia?

journal club, internal moves, tech talks, 20% hacker time, demos, open houses

M. Kane

Optimization for Physics

Accounting for training sample biases

Typical issue is how to show robustness in data.

- * Data driven tests
- Training sample composition (to minimize biases which you know of a priori)

and rough performance...

- * Overall accuracy
- * Behavior of loss functions, etc

How do we find the biases we have introduced in our training?

F. Psihas

Ensuring dependencies on the physics

She would know this is not what doggies look like in nature.

How can we make sure these algorithms incorporate the physics that we know?

- * There are some alternatives out there i.e. GANs trained in data.. but this matters for any algorithm
- ★ Simple tests on an individual basis

Can we develop tools to universally optimize (NOT TUNE) for the physics we understand?

F. Psihas

Edward: A library for probabilistic modeling, inference, and criticism

Dustin Tran, David M. Blei Columbia University

Matt Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy Google Brain

edwardlib.org

D. Tran

Box's Loop

Simulator-based Model in Population Ecology

Edward is a library designed around this loop

[Box 1

D. Tran

Other Fantastic Ideas

- ML as a Service and clouds
- ML for Data Management
- Others ideas in discussion and questions in live notes

Suggestion(s) from CS

- Present the problem without the solution
- Allow ideas and early collaboration

Plan ahead

- Agreed to put all the lightning talk ideas online in one place
 - To enable CS-collaboration, ideas directly
- Common participation in upcoming CWP-ML Part III:
 - DS@HEP 2017, FNAL, May 12, 2017

Thank You

UF Understanding Scientific Collaboration

