

Injection from booster to collider rings Schemes, specifications and discussions

Masamitsu Aiba, PSI 03.05.2017

FCC-ee injector meeting

Contents

- Summary from previous studies
- Conventional injection scheme
- Multipole kicker injection
- (Tentative) Specifications
- Discussion for filling patterns (Booster and Collider)
- Summary

PAUL SCHERRER INSTITUT

Summary from previous studies

- Requirement/Assumption for top-up injection
 - Similar emittance in booster and collider (1.3 nm @ 175 GeV)
 - ~1.5 km straight section available in collider
 - 5 sigma clearance for high injection efficiency
 - (Limited) dynamic aperture: ~15 sigma for on-energy, 5 sigma up to +/- 2% off-energy
 - Septum
 - Blade thickness of 5 mm (3 mm + mechanical margin)
 - Wire septum of 0.2 mm (~20 um + mechanical margin)
- Two viable injection schemes found, but with some "weak points"
 - Conventional injection scheme (on-energy/off-energy)
 - Both on- and off-energy injection require a wire septum unless beta function at the septum is enhanced to >1 km
 - Beam disturbance (coherent betatron oscillation) due to a bump leakage in practice
 - Multipole kicker injection (on-energy/off-energy)
 - Nonlinear kicker is essential to avoid strong injection beam mismatch
 - Unavoidable emittance growth up to 30% due to the limited dynamic aperture or (normalised) dispersion

Conventional injection (1)

Optics and orbits for on-energy injection with wire septum

Required dynamic aperture

Conventional injection (2)

- Reconsideration of magnetic septum assumptions
 - Present assumption: 3 mm blade (5 mm septum thickness with margin)
 - To achieve strong enough (~0.5 T) field to inflect the injection beam
 - The blade should be thick enough to suppress stray field
 - Thinner septum?
 - Field of ~0.1 T is enough since a very long straight section is available (Also a large ring beta, >100m, helps for 90 deg. upstream thick/DC septum)
 - Allow (some) stray field but compensate for by other means rather than by thick blade
 - With a lower field and a less stringent stray field criterion, the thickness can be thinner
 - Possible revised assumption: 1.5 mm including mechanical margin
 - Easy for conventional injection scheme (e.g. no wire septum and easy-handling beta)

Conventional injection (3)

- "Compensation septum" (or "Dummy septum")
 - Put another septum to compensate for the stray field disturbance
 - 2π injection orbit bump with Compensation and Injection septa at the peak of bump with a π phase advance in-between
 - Stray field generate a closed π bump \rightarrow No bump leakage in principle when the two septa are identical
 - Note that orbit bumpers and septa do not necessarily have same pulse duration/shape

Conventional injection (4)

Optics and orbits for on-energy injection with thin septum and compensation septum

Multipole kicker injection (1)

How the beams are "packed" in the phase space...

Multipole kicker injection (2)

- Similar approach to "Compensation septum"
 - Compensate for the emittance growth by another kicker, "Compensation kicker"
 - With π phase advance between two kickers, the disturbance to the beam is to be compensated for (up to any high multipole)
 - Sextupole-like nonlinear kicker:

Two C-shape kickers

Dipole kicker to cancel the dipole component at the centre

Residual dipole kick is also compensated when two kickers are identical
Can be Quad+Octupole kicker if we accept "beta function bump"

Field profile expected for on-energy inj. (Poisson computation for static field)

Multipole kicker injection (3)

Optics and orbits for on-energy injection with multipole kicker and compensation kicker

Beams in phase space

Specifications

Parameters	Conventional injection (on-/off-energy)	Multipole kicker injection (on-/off-energy)
Beta at septum and kicker (m)	310/310 (or 1200/1800)	~400 m
beta at septum and kicker (m)	310/310 (01 1200/1800)	400 111
Type of kicker	Dipole kickers	Nonlinear kicker
Integrated kicker field (Tm)	0.012/0.025 (or weaker)	0.025/0.03 (Plateau)
Type of septum	Wire septum (or 5-mm septum)	5-mm septum or wire septum
Required DA (σ)	~15/5@-1.8%	15/5@-2%

- (Tentative) specifications are found
- Similar specifications apply to the compensation kicker/septum schemes
- Kicker and septum pulse durations are still missing

Filling pattern (1)

Collider

- The four operation modes require very different filling patterns (number of bunches, bunch spacing)
- Common RF scheme (with no separator) assumes only a half of collider ring to be filled (K. Oide, FCC week 2016)
- RF beam loading study suggests rather uniform filling (with various fine structures, "by2", "by4", etc.)

(D.Teytelman, https://indico.cern.ch/event/590639/contributions/2382368/attachments/1377659/2092710/dt_beam_loa_ding.pdf)

Booster

- Any constraint in the filling pattern?
- Booster to Collider transfer
 - Bunch-by-bunch transfer may not be realistic because of the large number of bunches in Z mode?
 - Burst mode can adopt different bunch spacing as demanded?

Filling pattern (2)

- Long-flat-top kicker and septum may be applicable to any filling pattern
 - Single train in the booster is required... Compatible with the injector chain?
 - For the collider beam lifetime of ~1 hour, need to top-up the two collider rings by 6~8 booster cycles
 - This corresponds to 83~111 μs flat-top when the collider ring is fully filled, or 42~55 μs flat top for half filling

Summary

- Two viable injection schemes identified
- Possible improvements of these schemes are under investigation
- (Tentative) Specifications for injection found though still missing ones of pulse duration
- Long-flat-top kicker and septa may be applicable and flexible to realise various filling pattern (if it is fine for booster)