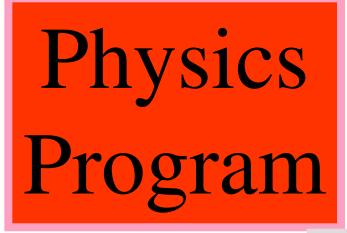

The SuperB Project

Achille Stocchi LAL-Orsay Université de Paris-Sud/CNRS

Second High Energy Physics School in Măgurele

22-23 October 2009

IFIN-HH, Magurele-Bucharest


In this seminar I'll discuss a project named SuperB factory. « Super » because the luminosity will be100 times the one of the present B-factory with the aim of discovering and/or studying NP

> Two of such projects exist 1. « KEKB in Japan » 2. « SuperB in Italy »

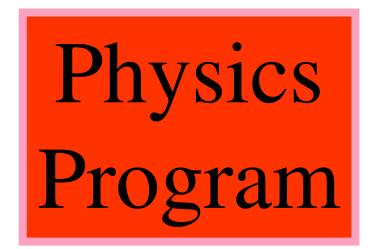
I'll discuss the program to construct a SuperB factory (with new accelerating scheme concepts) in Italy, near by Frascati

Why we are discussing it now?

The TDR phase of the project has been approuved (6MEuros/year) We aim for an project approuval (during this phase) by the beginning of the next year for a data taking in ~2015.

35'

The Machine



The

Detector

15'

Left for discussion

SuperB is a discovery machine in LHC era

Flavour Physics in the Standard Model (SM) in the quark sector:

10 free parameters

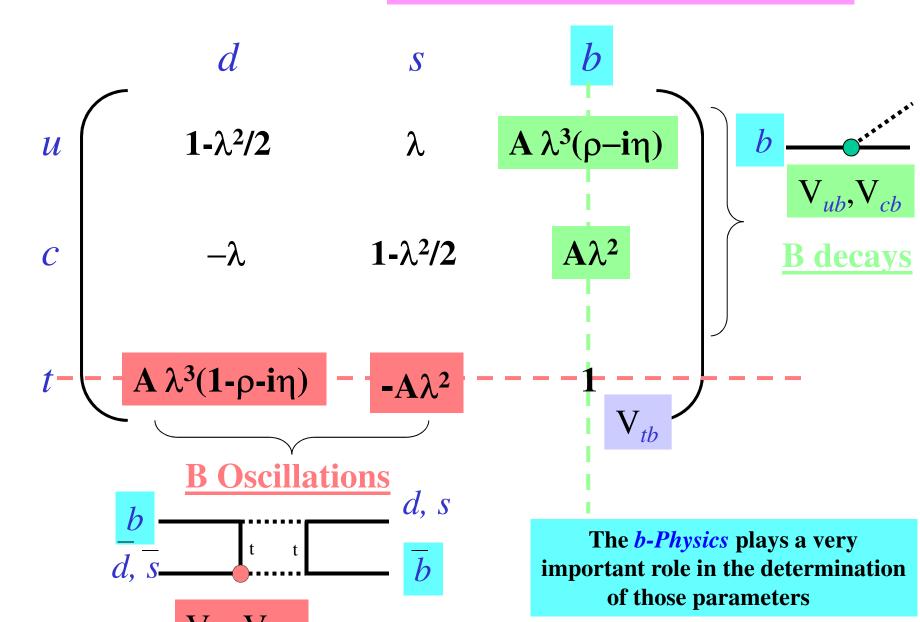
6 quarks masses

4 CKM parameters

parametrization : λ , A, $\overline{\rho}$, $\overline{\eta}$ η responsible for CP violation in SM

In the Standard Model, charged weak interactions among quarks are codified in a 3 X 3 unitarity matrix :

the



Matrix.

The existence of this matrix conveys the fact that the quarks which participate to weak processes are linear combination of mass eigenstates

The fermion sector is poorly constrained by SM + Higgs Mechanism mass hierarchy and CKM parameters The CKM Matrix

Wolfenstein parametrization 4 parameters : λ , A, ρ , η

The Unitarity Triangle

The CKM is unitary $VV^{\dagger} = V^{\dagger}V = 1$

The non-diagonal elements of the matrix products correspond to 6 triangle equations

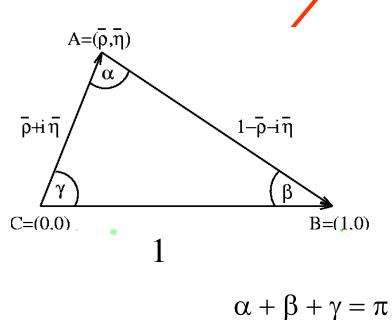
$$V_{ud}^{*} V_{us} + V_{cd}^{*} V_{cs} + V_{td}^{*} V_{ts} = 0 \qquad \lambda \lambda \lambda \lambda^{5}$$

$$V_{ub}^{*} V_{ud} + V_{cb}^{*} V_{cd} + V_{tb}^{*} V_{td} = 0$$

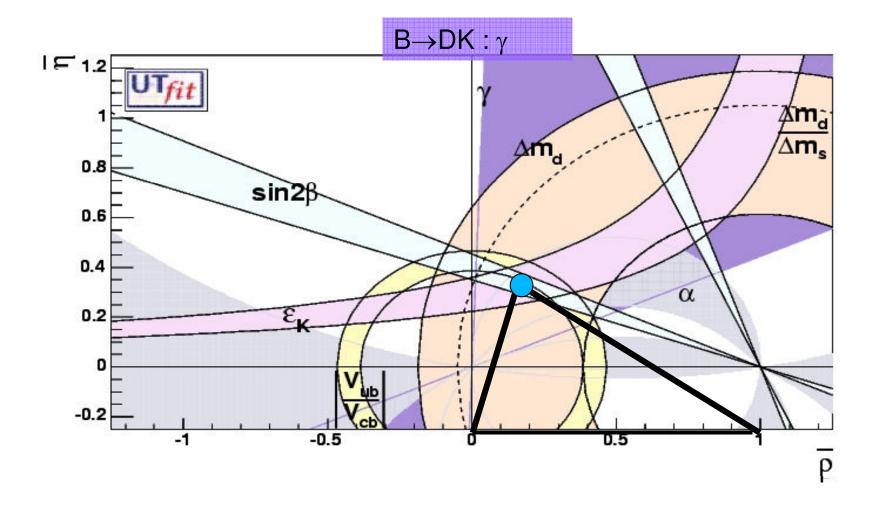
$$\lambda^{5} \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{us}^{*} V_{ub} + V_{cs}^{*} V_{cb} + V_{ts}^{*} V_{tb} = 0 \qquad \lambda^{5} \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{ud}^{*} V_{td} + V_{us}^{*} V_{ts} + V_{ub}^{*} V_{tb} = 0 \qquad \lambda^{5} \lambda^{2} \lambda^{2} \lambda^{2}$$

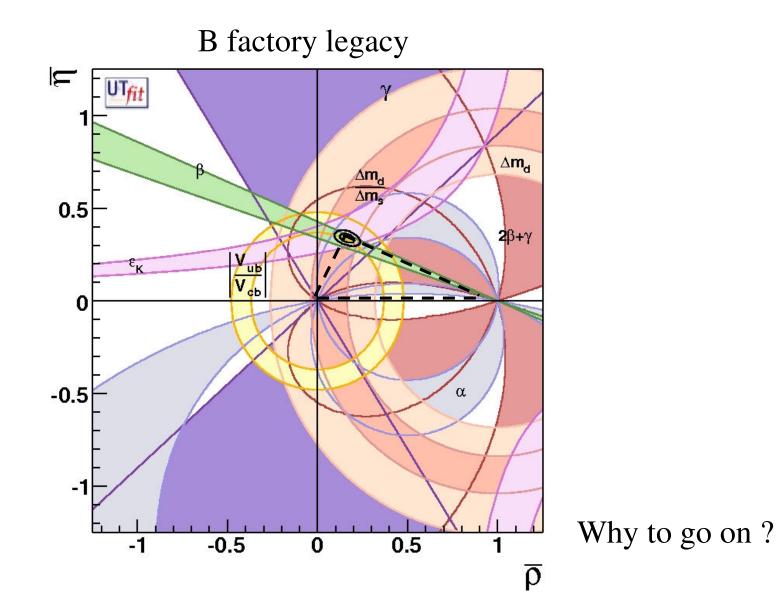

$$V_{ud}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{5} \lambda^{2} \lambda^{2} \lambda^{2}$$

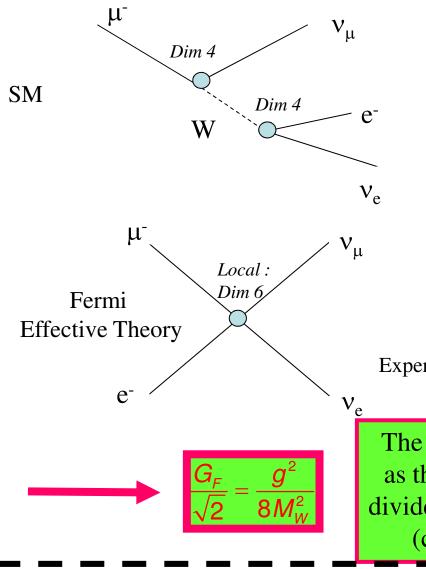
$$V_{ud}^{*} V_{cd} + V_{us}^{*} V_{cs} + V_{ub}^{*} V_{cb} = 0 \qquad \lambda \lambda \lambda^{5}$$


$$\overline{AB} = \frac{V_{td} V_{tb}^{*}}{V_{cd} V_{cb}^{*}} = \sqrt{(1 - \overline{\rho})^{2} + \overline{\eta}^{2}} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right|$$

$$\overline{AC} = \frac{V_{ud} V_{ub}^{*}}{V_{cd} V_{cb}^{*}} = \sqrt{\overline{\rho}^{2} + \overline{\eta}^{2}} = \left(1 - \frac{\lambda^{2}}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|$$

$$Also for angles B physics is crucial$$




An example on how to fit the UT parameters and fit new physics

Crucial Test of the SM in the quarks sector

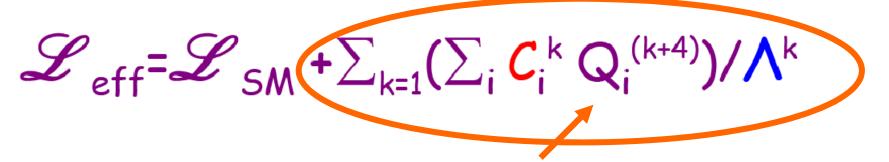
Coherent picture of CP Violation in SM

 $e = g \sin(\theta_{\rm W})$

$$L_{cc} = \frac{g}{\sqrt{2}} \left(J_{\mu}^{-} W_{-}^{\mu} + J_{\mu}^{+} W_{+}^{\mu} \right)$$

$$M = \left(\frac{g}{\sqrt{2}} \overline{u}_{\nu_{\mu}} \gamma^{\mu} \frac{1}{2} (1 - \gamma_{5}) u_{\mu} \right) \frac{1}{M_{W}^{2} - q^{2}} \left(\frac{g}{\sqrt{2}} \overline{u}_{e} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) u_{\nu_{e}} \right)$$
if $q^{2} < < M_{W}^{2}$ (case of beta decay)
$$M \quad \frac{g^{2}}{8M_{W}^{2}} \left(\overline{u}_{\nu_{\mu}} \gamma^{\mu} (1 - \gamma_{5}) u_{\mu} \right) \left(\overline{u}_{e} \gamma_{\mu} (1 - \gamma_{5}) u_{\nu_{e}} \right)$$

$$M \quad \frac{G_{F}}{\sqrt{2}} \left(\overline{u}_{\nu_{\mu}} \gamma^{\mu} (1 - \gamma_{5}) u_{\mu} \right) \left(\overline{u}_{e} \gamma_{\mu} (1 - \gamma_{5}) u_{\nu_{e}} \right)$$


Experimentally from muon decay $G_F = 1.16 \times 10^{-5} GeV^{-2}$

The effective coupling constant GF is expressed as the SM « fundamental » coupling constant g divided by the mass of the propagator M_W squared (consequence of Dim=6 operators [4legs])

In this specific case we know

- \rightarrow from SM
- \rightarrow Experimentally M_w~80 GeV

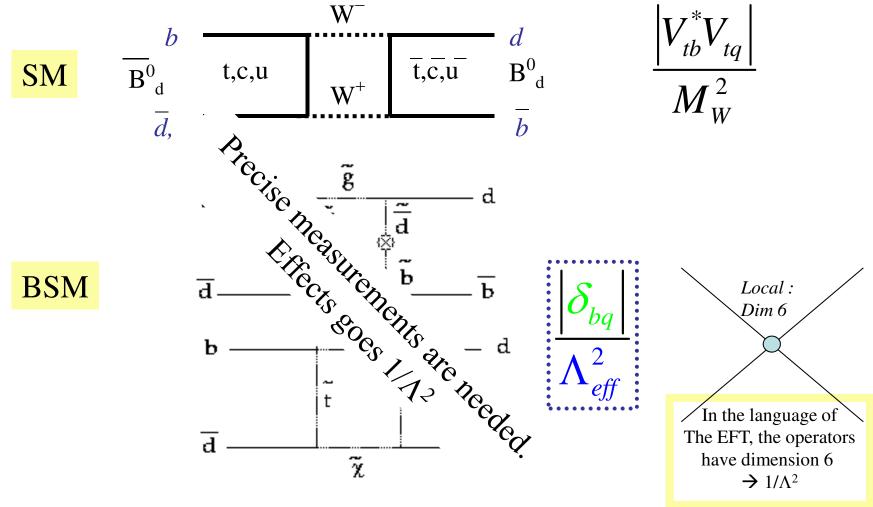
The weak interaction is not weak because of g << ebut because of the large value for the W mass Effective Flavour Theory to New Flavour Physics : A game of scale and coupling

New operators which are of dimension >4, in principle the theory is not Renormalizable...as Fermi theory was not..! [You can show that in B physics the new operators have dimension 6]

NP flavour effects are governed by two players

- \rightarrow the value of the new phyiscs scale Λ
- \rightarrow the effective flavour-violating coupling C's

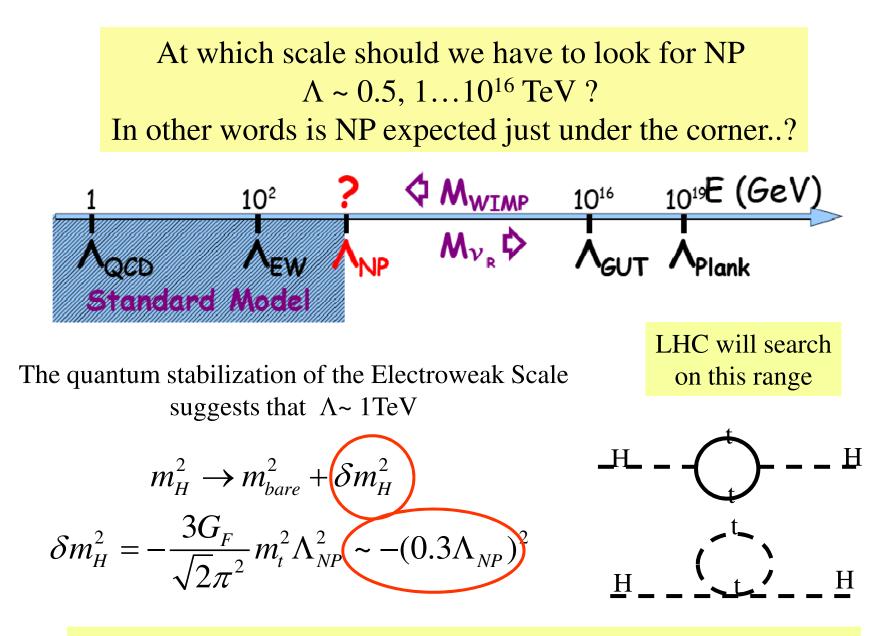
In explicit models

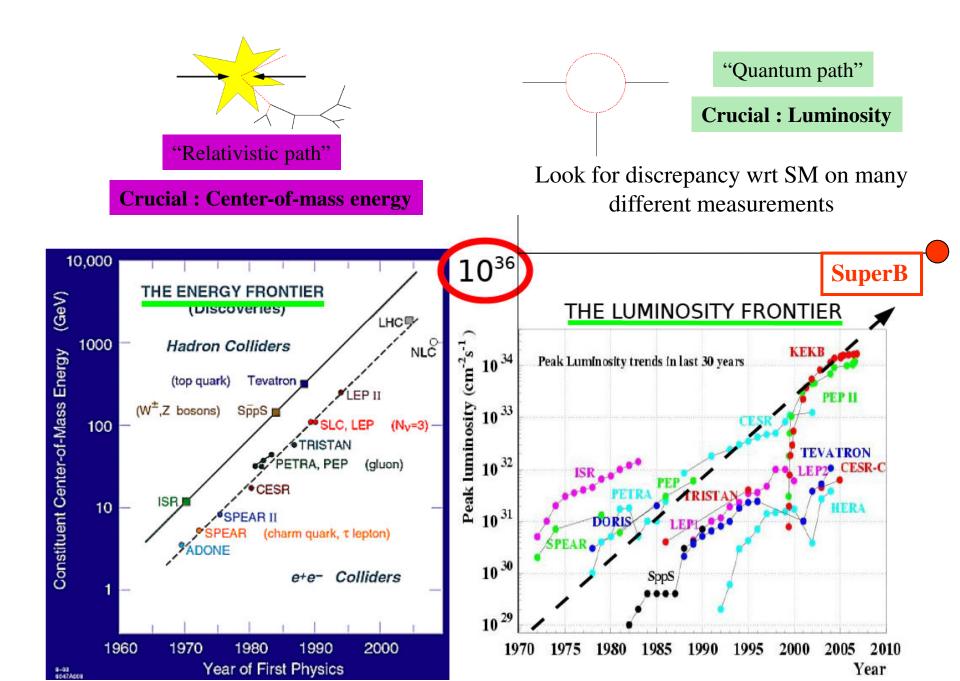

 Λ ~ mass of virtual particle

C ~loop coupling × flavour coupling

(Fermi theory : M_W) (SM/MFV $\alpha_w \times CKM$)

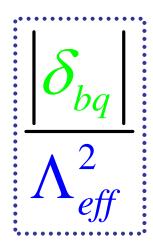
Example for B oscillations (FCNC- $\Delta B=2$)

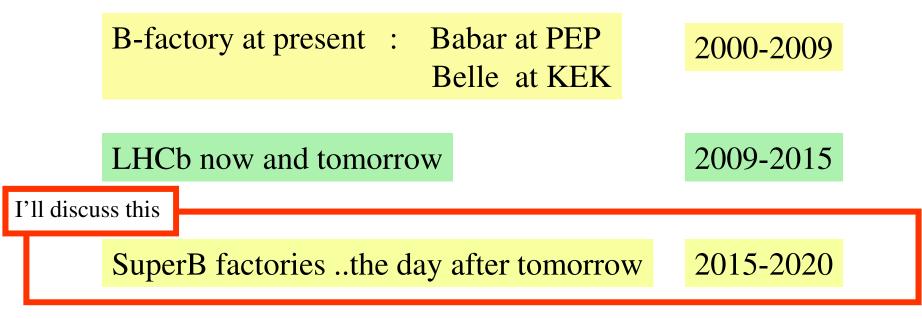

FCNC porcesses are ideal place to look for NP effects because they are suppressed in SM

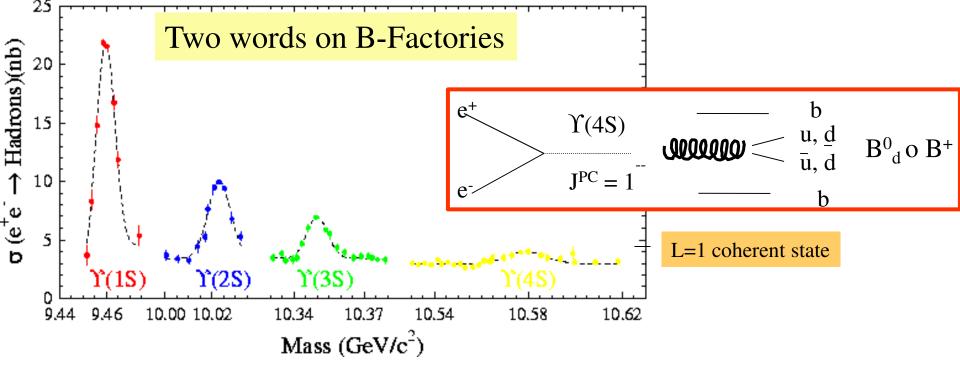

The measurements (in this case Δm_d)

are modified wrt the predictions of the SM by the presence of BSM particles.

modifications are important if couplings are larger and/or NP masses are lighter




Those are arguments of fine tuning...if the NP scale is at 2-3..10 TeVnaturalness is not at loss yet...

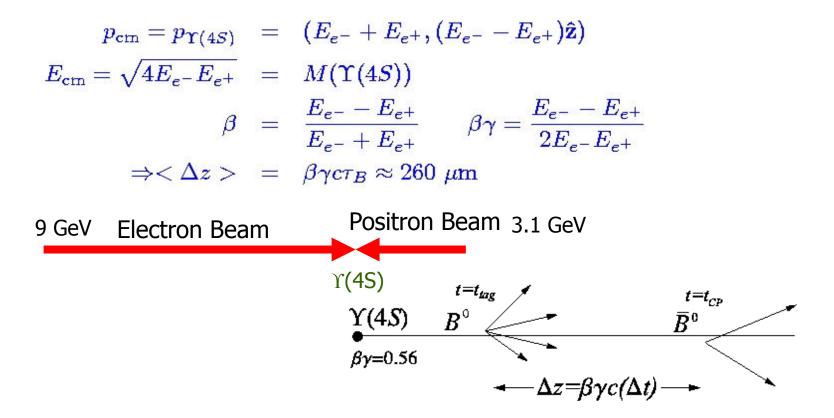


The experiments working on flavour phyiscs have to perform flavour measurements such that

- \rightarrow if NP particles are discovered at LHC we able to study the <u>flavour structure of the NP</u>
- \rightarrow we can explore <u>NP scale</u> beyond the LHC reach

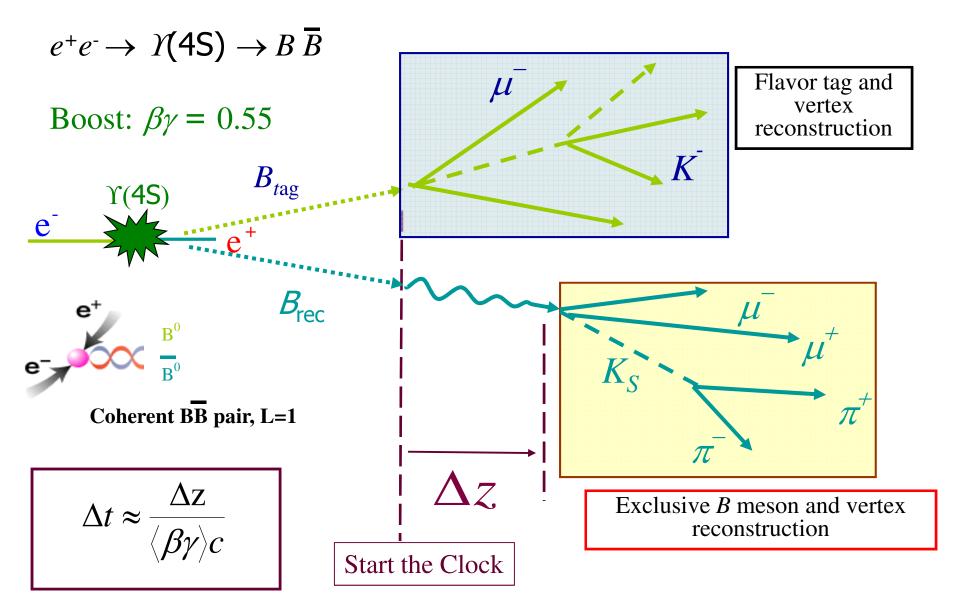
•Example L= 10^{34} cm⁻² s⁻¹ 1 year (~1.5 ×10⁷ seconds)

•
$$L_{\rm int} = 1.5 \times 10^{41} \, {\rm cm}^{-2} = 150 \, {\rm fb}^{-1}$$

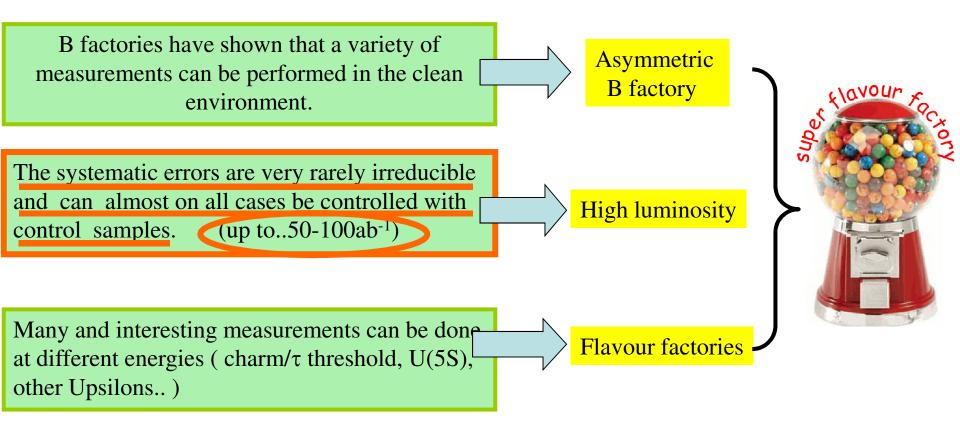

- $N = \sigma L_{int}$
- production cross section of the l'Y(4s) : ~1.1 nb

 \Rightarrow ~ 1.5 × 10⁸ Y(4s) produced by year

Babar has collected 450fb⁻¹ and Belle ~800fb⁻¹

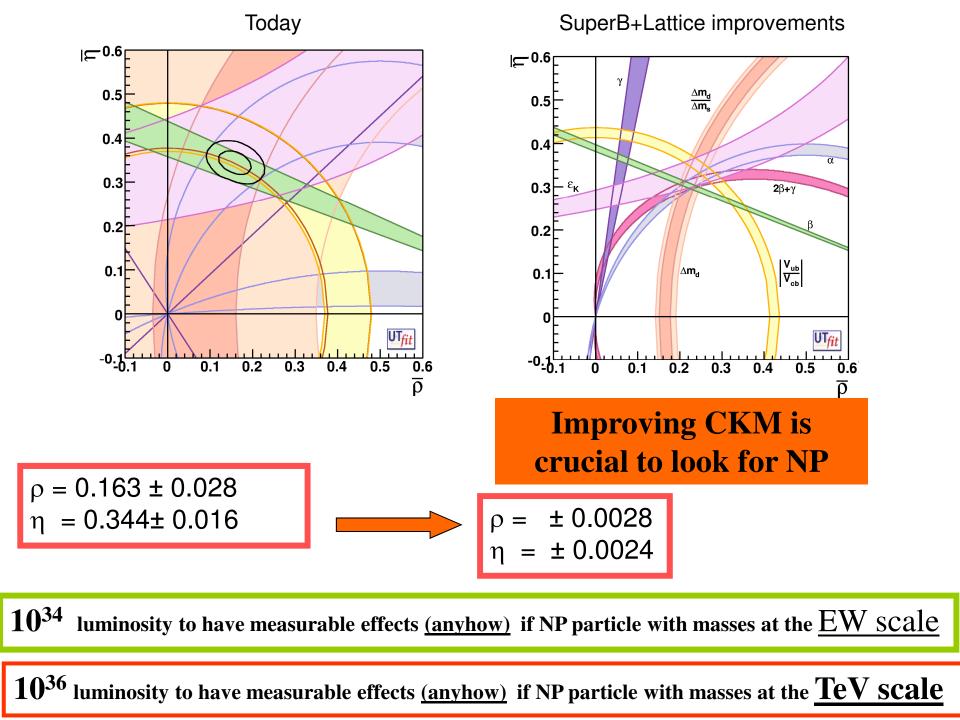

The Y(4S) Boost - Asymmetric B-factories

The purpose of asymmetric beam energies is to boost the $B^0\overline{B^0}$ system relative to the lab frame.


By measuring Δz , we can follow time dependent effects in B decays.

At the $\Upsilon(4S)$ resonance

L= 10^{34} cm⁻² s⁻¹ \rightarrow 150 fb⁻¹ \rightarrow 1.5×10^{8} Y(4s) produced by year


L= 10^{36} cm⁻² s⁻¹ \rightarrow 15 ab⁻¹ \rightarrow 1.5 × 10¹⁰ Y(4s) produced by year

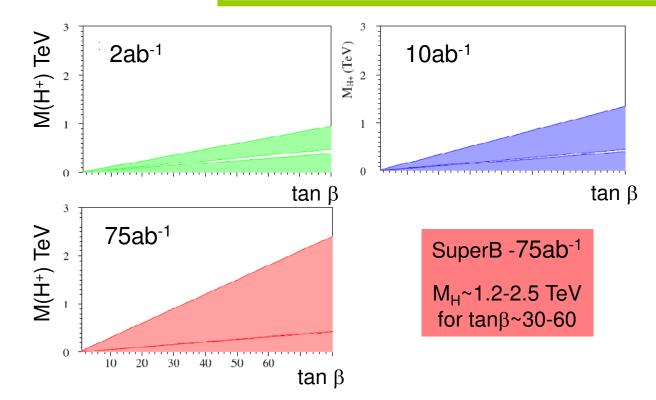
SuperB factory potential discovery evaluated with 75ab⁻¹

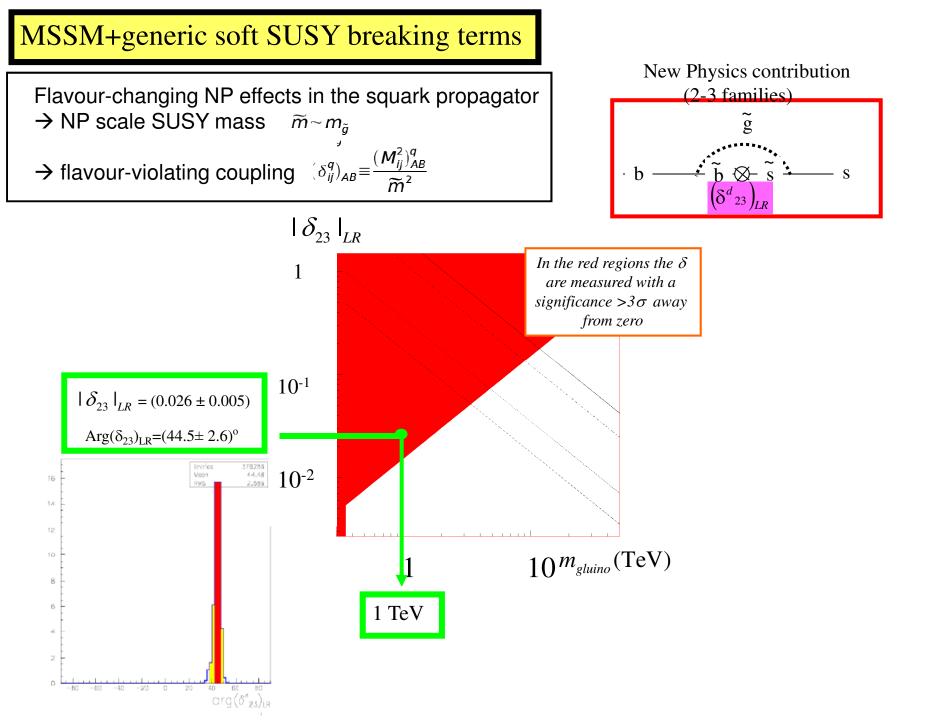
	B physics @ Y(4	IS)	Variety of measurements for any observable				
Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	 Observable	B Factories (2 ab^{-1})	Super B (75 at		
$\sin(2eta)~(J/\psi~K^0)$	0.018	0.005 (†)		200W	107 (1)		
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)		
$\sin(2eta)~(Dh^0)$	0.10	0.02	$\mathcal{B}(B \to \mu \nu)$	visible	5%		
$\cos(2eta)~(Dh^0)$	0.20	0.04 📕	$\mathcal{B}(B \to D\tau\nu)$	10%	2%		
$S(J/\psi \pi^0)$	0.10	0.02					
$S(D^+D^-)$	0.20	0.03	${\cal B}(B o ho\gamma)$	15%	3% (†)		
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	${\cal B}(B o\omega\gamma)$	30%	5%		
$\alpha \ (B \to \rho \rho)$	$\sim7^{\circ}$	$1\text{-}2^{\circ}$ (*)	$A_{CP}(B ightarrow K^* \gamma)$	0.007 (†)	0.004 († *)		
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	$A_{CP}(B o ho\gamma)$	~ 0.20	0.05		
$lpha~(ext{combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	· · · ·				
$\gamma \; (B ightarrow DK, D ightarrow CP ext{ eigenst}$	ates) $\sim 15^{\circ}$	2.5°	$A_{CP}(b \to s\gamma)$	0.012 (†)	0.004 (†)		
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed})$	states) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)		
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody})$	states) $\sim 9^{\circ}$	1.5°	$S(K^0_S\pi^0\gamma)$	0.15	0.02 (*)		
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$	$S(ho^0\gamma)$	possible	0.10		
$2B + \gamma (D^{(+)} = \pi^{\top}, D^{\pm} K_{s}^{0} = 1)$	202	58					
			$A_{CP}(B \to K^*\ell\ell)$	7%	1%		
$S(\phi K^0)$	0.13	0.02(*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%		
$> S(\eta' K^0)$	0.05	0.01 (*)	$A^{FB}(B \to X_s \ell \ell) s_0$	35%	5%		
$> S(K_s^0 K_s^0 K_s^0)$	0.15	0.02 (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%		
$> S(K_{ m s}^0\pi^0)$	0.15	0.02 (*)	$\mathcal{B}(B \to \pi \nu \bar{\nu})$	VISION	possible		
$S(\omega K^0_{s})$	0.17	0.03(*)		-			
$S(f_0K_s^0)$	0.12	$0.02\;(*)$	P	ossible also at LHC	D		
			Sim	ilar precision at LH	Cb		
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)	Example of «	SuperB specific	cs »		
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)		addition to exclus			
$ V_{nb} $ (exclusive)	8% (+)	3.0% (*)			er en		
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)	channels wi	th π^0 , γ 's, ν , many	N S		

τph	nysics (pola	rized beams) [Charm at Y	Y(4S) and thre	shold —
 P	rocess	Sensitivity		Mode	Observable	B Factories (2 ab^{-1})	Super B (75 ab ⁻¹
151 151 151 151 151 151 151 151 151 151	1 55 1 55 1 55 1 55 1 55 1 55 1 55 1 1 1 1 55 1 55 1 1 1 1 55 1 55 1 55 1 1 1 1 55 1 55 1 1 1 1 55 1 55 1 1 1 1			$D^0 \rightarrow K^+ K$	202	$2-3 \times 10^{-3}$	5×10^{-4}
	$B(au o \mu \gamma)$			$D^0 = K^1 \pi$		2-3 × 10 ⁻⁵	7 × 10-4
B	$S(au o e\gamma)$	$2 imes 10^{-9}$		$D^0 \rightarrow K_s^0 \pi^+$	x ² _D	$1-2 \times 10^{-4}$ $2-3 \times 10^{-3}$	3×10^{-5} 5×10^{-4}
B	$\beta(au o \mu \mu \mu)$	$2 imes 10^{-10}$		$D^{z} \rightarrow K_{S}^{z} \pi^{z}$	$\pi^- y_D$ x_D	$2-3 \times 10^{-3}$ $2-3 \times 10^{-3}$	5×10^{-4} 5×10^{-4}
•	• • • • •			Average	yD	$1-2 \times 10^{-3}$	3×10^{-4}
	S(au ightarrow eee)	18 11 53 1 6 118 118 118 118 118 118 118 118 118		2	x_D	23×10^{3}	$5 imes 10^{-4}$
B	$\beta(au o \mu\eta)$	$4 imes 10^{-10}$		$D^0 \rightarrow K^+ \pi^-$	x'^2		3×10^{-5}
B	$S(au o e\eta)$	$6 imes 10^{-10}$		$D^0 \rightarrow K^+ K^-$	y'		$\begin{array}{c} 7\times10^{-4} \\ 5\times10^{-4} \end{array}$
	•			$D^{\circ} \rightarrow K^{\circ}K$ $D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$. y _{CP} . x	To be evaluated	4.9×10^{-4}
<u> </u>	$B(au o \ell K_s^0)$	2 × 10 ==		5	y	at LHCb	3.5×10^{-4}
			_		q/p		3×10^{-2} 2°
	B _s at Y	(5S)					
					Channel		tivity
Observable	Error	with 1 ab^{-1} Error	r with 30 ab^{-1}		$D^0 \rightarrow e^+e^-, D^0$ $D^0 \rightarrow \pi^0 e^+e^-, L^0$		10 ⁻⁸
ΔΓ			0.03 ps ⁻¹		$D^{0} \rightarrow \eta e^{+}e^{-}, D^{0}$ $D^{0} \rightarrow \eta e^{+}e^{-}, D^{0}$	1 1	10^{-8}
Γ			0.01 ps ⁻¹		$D^0 \rightarrow K^0_{s} e^+ e^-, 1$		10-8
β_s from angula	ar analysis	20°	88		$D^+ \rightarrow \pi^+ e^+ e^-,$	D^+ $x^+ u^+ u^- = 1 x^-$	
<u> </u>		0.006	0.004		,	$D^+ \rightarrow \eta^+ \mu^+ \mu^- \perp \chi$	10^{-8}
$A_{ m SL}^s$		0.006	0.004		, 	, ,	
$\begin{array}{c} A_{\rm SL}^{\rm o} \\ \hline A_{\rm CH} \\ \hline \mathcal{B}(B_s \to \mu^+ \mu^+ \end{array}$)	0.004	0.004 0.004 < 8 × 10 ⁻⁹		$D^0 ightarrow e^\pm \mu^\mp$	1 ×	10-8
Асн)	0.004	0.004		, 	1 × 1 ×	
$egin{aligned} & A_{ m CH} \ & \mathcal{B}(B_s ightarrow \mu^+ \mu^+ \ & V_{td}/V_{ts} \ & \mathcal{B}(B_s ightarrow \gamma \gamma) \end{aligned}$		0.004 	0.004 < 8 × 10 ⁻⁹ 0.017 7%		$D^0 \rightarrow e^{\pm} \mu^{\mp}$ $D^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$	1 × 1 × 2 ×	10 ⁻⁸ 10 ⁻⁸
$\begin{array}{c} A_{\rm CH} \\ \mathcal{B}(B_s \rightarrow \mu^+ \mu^- \\ V_{td}/V_{ts} \\ \mathcal{B}(B_s \rightarrow \gamma \gamma) \\ \beta_s \ {\rm from} \ J/\psi \phi \end{array}$		0.004 0.08 38% 16*	0.004 ≤ 8 × 10 ⁻⁹ 0.017 7% 6°		$D^0 ightarrow e^{\pm} \mu^{\mp}$ $D^+ ightarrow \pi^+ e^{\pm} \mu^{\mp}$ $D^0 ightarrow \pi^0 e^{\pm} \mu^{\mp}$	1 × 1 × 2 × 3 ×	10 ⁻⁸ 10 ⁻⁸ 10 ⁻⁸
$egin{aligned} & A_{ m CH} \ & \mathcal{B}(B_s ightarrow \mu^+ \mu^+ \ & V_{td}/V_{ts} \ & \mathcal{B}(B_s ightarrow \gamma \gamma) \end{aligned}$		0.004 	0.004 < 8 × 10 ⁻⁹ 0.017 7%		$D^{0} \rightarrow e^{\pm} \mu^{\mp}$ $D^{+} \rightarrow \pi^{+} e^{\pm} \mu^{\mp}$ $D^{0} \rightarrow \pi^{0} e^{\pm} \mu^{\mp}$ $D^{0} \rightarrow \eta e^{\pm} \mu^{\mp}$ $D^{0} \rightarrow K_{s}^{0} e^{\pm} \mu^{\mp}$	1 × 1 × 2 × 3 × 3 ×	$ \begin{array}{c} 10^{-8} \\ 10^{-8} \\ 10^{-8} \\ 10^{-8} \\ 10^{-8} \end{array} $
$\begin{array}{c} \underline{A_{\rm CH}} \\ \overline{\mathcal{B}}(B_s \to \mu^+ \mu^- \\ V_{td}/V_{ts} \\ \overline{\mathcal{B}}(B_s \to \gamma \gamma) \\ \overline{\mathcal{B}}_s \text{ from } J/\psi \phi \\ \overline{\mathcal{B}}_s \text{ from } B_s \to \end{array}$	K ⁰ K ⁰	0.004 0.08 38% 16*	0.004 < 8 × 10 ⁺⁹ 0.017 7% 6 ⁹ 11°		$\begin{split} D^{0} &\rightarrow e^{\pm} \mu^{\mp} \\ D^{+} &\rightarrow \pi^{+} e^{\pm} \mu^{\mp} \\ D^{0} &\rightarrow \pi^{0} e^{\pm} \mu^{\mp} \\ D^{0} &\rightarrow \eta e^{\pm} \mu^{\mp} \\ D^{0} &\rightarrow K_{s}^{0} e^{\pm} \mu^{\mp} \\ D^{0} &\rightarrow K_{s}^{0} e^{\pm} \mu^{\mp} \end{split}$	$\begin{array}{c} 1 \times \\ 1 \times \\ 2 \times \\ 3 \times \\ 3 \times \end{array}$ $D^+ \rightarrow K^- e^+ e^+ \qquad 1 \times \end{array}$	$ \begin{array}{c} 10^{-8} \\ 10^{-8} \\ 10^{-8} \\ 10^{-8} \end{array} $

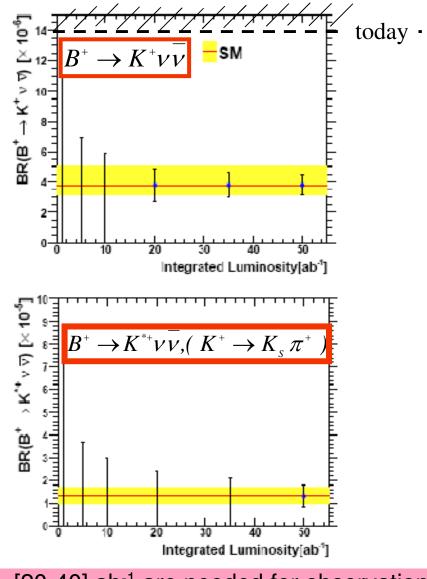
Let's consider (reductively) the GOLDEN MATRIX for B physics

	↓		Ļ	Ļ	Ļ	Ļ		
	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed		
hig	gh tan β	$_{\rm FV}$	FV (1-3)	FV (2-3)	Z-penguins	currents		
$\mathcal{B}(B \to X_s \gamma)$		X		0		О		
$A_{CP}(B \to X_s \gamma)$				X		О		
$- \mathcal{B}(B \to \tau \nu) = X$	- CKM							
$\triangleright \mathcal{B}(B \to X_s l^+ l^-)$				О	0	О		
$\mathcal{B}(B \to K \nu \overline{\nu})$				О	X	X		
$rac{S(K_S\pi^0\gamma)}{eta}$			X- CKM			Х		
× The GOLDEN channel for the given scenario				« SuperB specifics »				
\bigcirc Not the GOLDEN channel for the given scenario,				inclusive analyses				
but can show experimentally measurable deviations from SM.					channels with π^0 , γ , ν , many Ks			

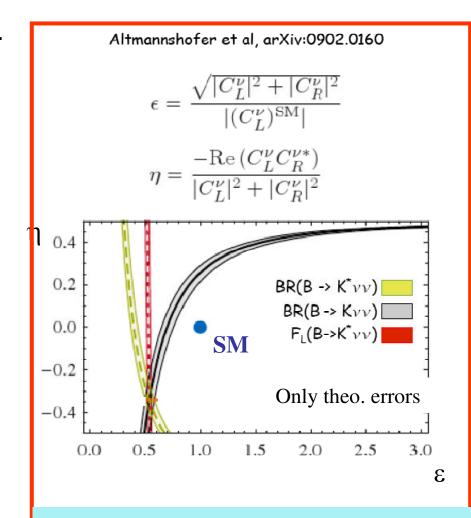

In the following some examples of

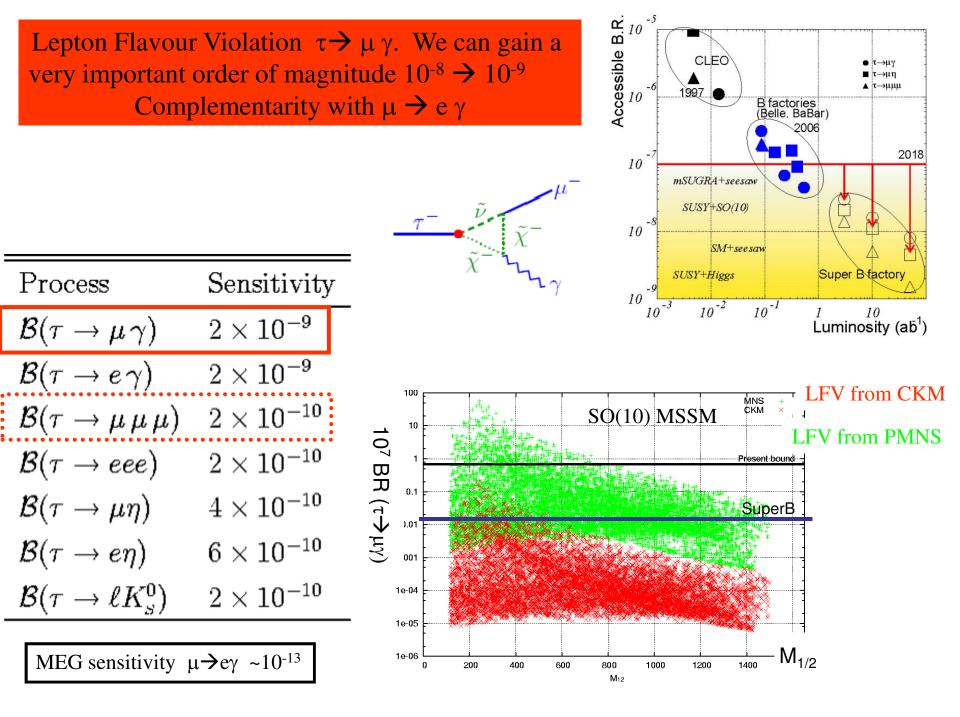

leptonic decay $B \rightarrow lv$

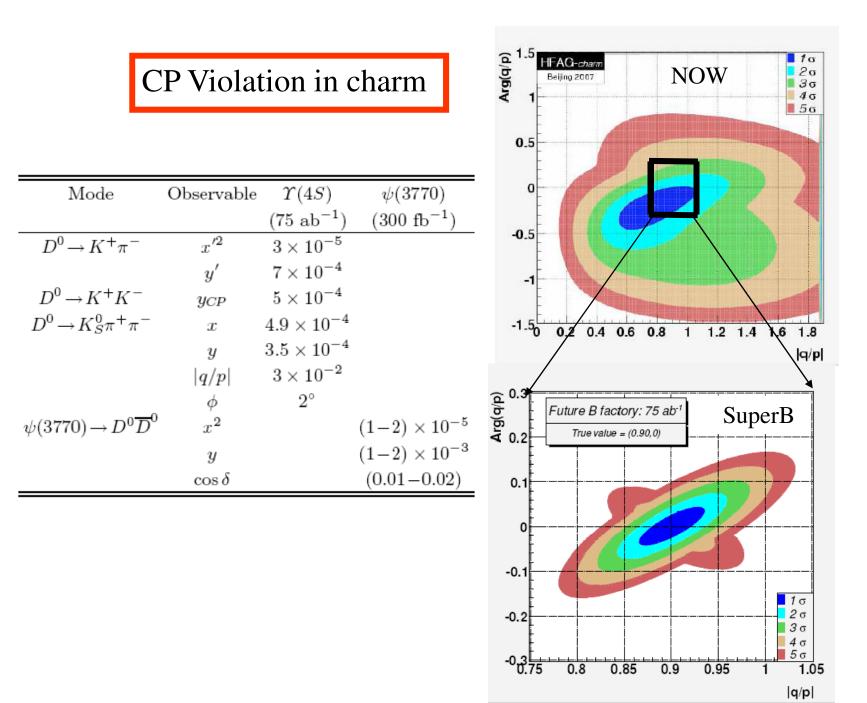
$$\mathsf{BR}(\boldsymbol{B} \to \tau \nu) = \mathsf{BR}_{\mathsf{SM}}(\boldsymbol{B} \to \tau \nu) \left(1 - \frac{m_B^2}{M_H^2} \mathsf{tan}^2 \beta \right)^2$$


b I^+ (H^+,W^+) V **BR**(**B** $\rightarrow \tau$ **v**) = (1.73 ± 0.34)10⁻⁴ (exp. Belle+BaBar)

$ \begin{array}{ccc} \mathcal{B}(B \to \tau \nu) & 20\% & 4\% \ (\dagger) \\ \mathcal{B}(B \to \mu \nu) & \text{visible} & 5\% \\ \mathcal{B}(B \to D -) & 10\% & 0\% \end{array} $	Observable	B Factories (2 ab^{-1})	Super B (75 ab
	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$\mathcal{B}(\mathcal{B} \cup \mathcal{D}_{-})$ 100 00	$\mathcal{B}(B ightarrow \mu u)$	visible	5%
$\mathcal{B}(B \to D \tau \nu)$ 10% 2%	$\mathcal{B}(B \to D \tau \nu)$	10%	2%




$Br(B \rightarrow K v v) - Z$ penguins and Right-Handed currents



~[20-40] ab⁻¹ are needed for observation >>50ab⁻¹ for precise measurement

If these quantities are measured @ <~10% deviations from the SM can be observed

New excitement on spectroscopy

See V. Balagura seminar

More data are needed :

→to complete the picture
→ to better studying the recently discovered particle (quantum numbers, branching fractions...)

	$\underline{J}/\psi\pi^{*}\pi$	D()D()	J/Ya	J/\ψπ⁺π⁰	ψ(2\$)π	J/ψK,π	Ψ(2S)ππ	Ϳ/ψφ,η	J/ψγ
Notes	Mass range for B	Low stat	Only B dec	Mass range! No ISR	No ISR No π ⁰	No Search	No B- dec	Only B dec	Mass windo w
X(3872)	Seen	Seen	Not seen	Not seen	Not seen	No search	N/A	Not seen	Seen
Y(3940)	No search	X(3940) ?	Seen	No search	Not seen	No search	No search	No Fit	No fit
Y(4260)	Seen	No fit	No fit	No search	No search	No search	Not seen	No fit	N/A
Y(4350)	Not seen	No fit	No fit	No search	No search	No search	Seen	No fit	N/A
Z(4430)	No search	No search	No fit	No search	Seen	No search	No search	No Fit	No searc h
Y(4660)	Not seen	No fit	No fit	No search	No search	No search	Seen	No Fit	N/A

 $L=10^{36} \text{cm}^{-2} \text{ sec}^{-1} \rightarrow 15 \text{ab}^{-1} \text{ per year}$

We need at least 75 ab⁻¹ \rightarrow L= 10³⁶cm⁻² sec⁻¹ is the baseline option

That's is the factory we need !

Unprecented precision

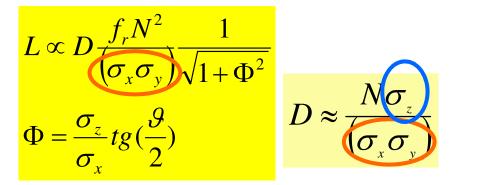
SuperB can perform many measurements at <1% level of precision

Precision on CKM parameters will be improved by more than a factor 10

... and do not forget... **SuperB** could also a **Super-Super** τ**-charm factory**, If we *<u>run at threshold</u>*.

Unique opportunity of LFV measurements, better if *beam polarized*.

SuperB Discovery Potential and Complementary to LHC


NP will be studied (measuring the couplings) if discovered at LHC

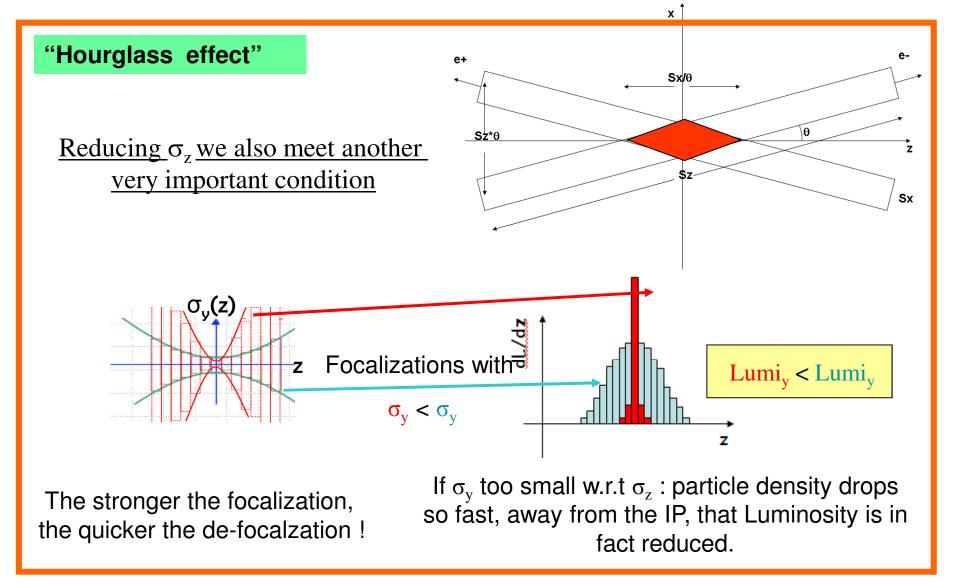
if NP is not (or "partially") seen at TeV, SuperB is the way of exploring NP scales of several TeV (in some scenario several (>10)TeV..)

The Machine

How it is possible to gain a factor 100 in the luminosity ..?

 $10^{34} \mathrm{cm}^2 \mathrm{sec}^{-1} \rightarrow 10^{36} \mathrm{cm}^2 \mathrm{sec}^{-1}$

To have large luminosity

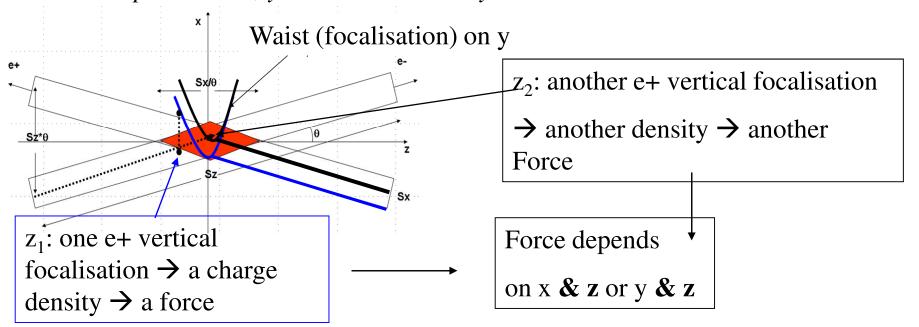

Two ways :

 \rightarrow Inscrease the currents (N~current)

 \rightarrow Decrease the beam size

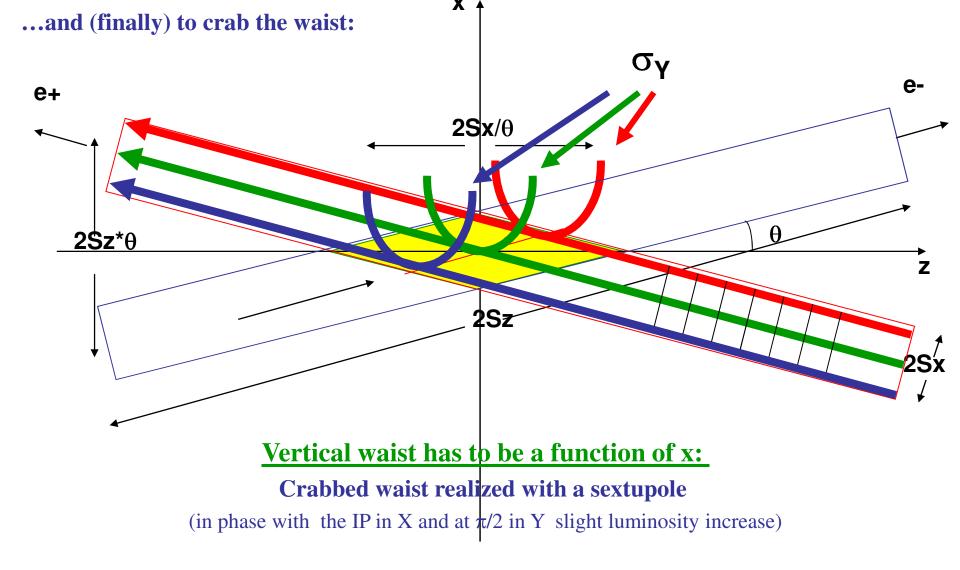
1) Single passage : D (disruption) high [profit of beam-beam effects (pinch)] small σ_x, σ_v 2) The beam has to be re-utilized in an accumulation ring \rightarrow to maxime $f_r \rightarrow D$ "small" *N.B. It is very difficult to reduce* 3)To keep D small and small σ_x, σ_y we also need small σ_z the size of the beam in z direction (say $\sigma_z < 0.5 mm$) х e+ Sx/0 **Crossing angle** Solution : interaction Sz*θ Sx

Crossing angle between e⁺ and e⁻ : bunch overlap length no longer σ_z , but $\sigma_x/\theta \ll \sigma_z$

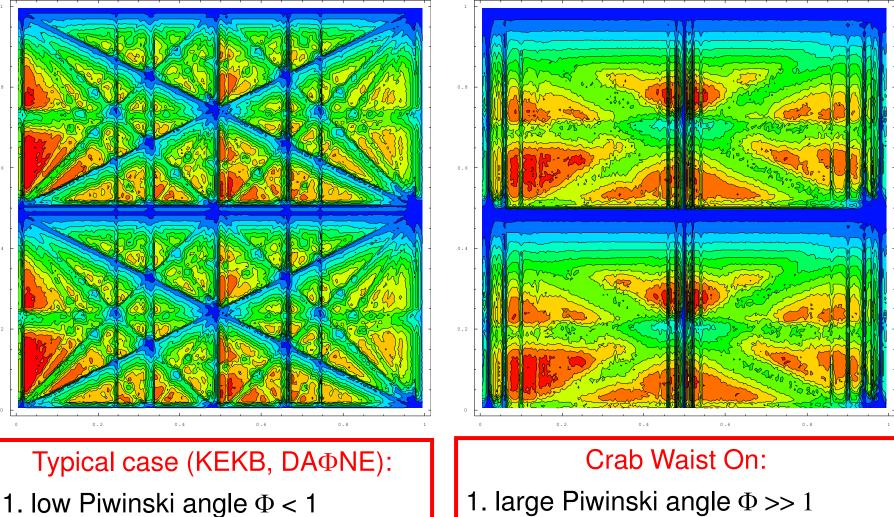


An important consequence : get high luminosity without inscreasing the current avoid to have a drammatic backgrounds in the detector

And now we need to... Crab the Waist


Crossing angle between e⁺ and e⁻ : bunch overlap length no longer σ_z , but $\sigma_x/\theta \ll \sigma_z$!

<u>But</u>: Charge density, thus the forces, felt by e^+/e^- in the crossing region depends on x, y & z simultaneously !


-Coupling between the x, y and z components of the e+/e- trajectories \rightarrow oscillations around the collider

In the machine language : Additional betatron-betatron / synchro-betatron resonances

Conceptually simple : restore the B-B effects to those we have quadrupoles focalizing in 2D (compensate the effects of the crossing angle)

Example of resonance suppression

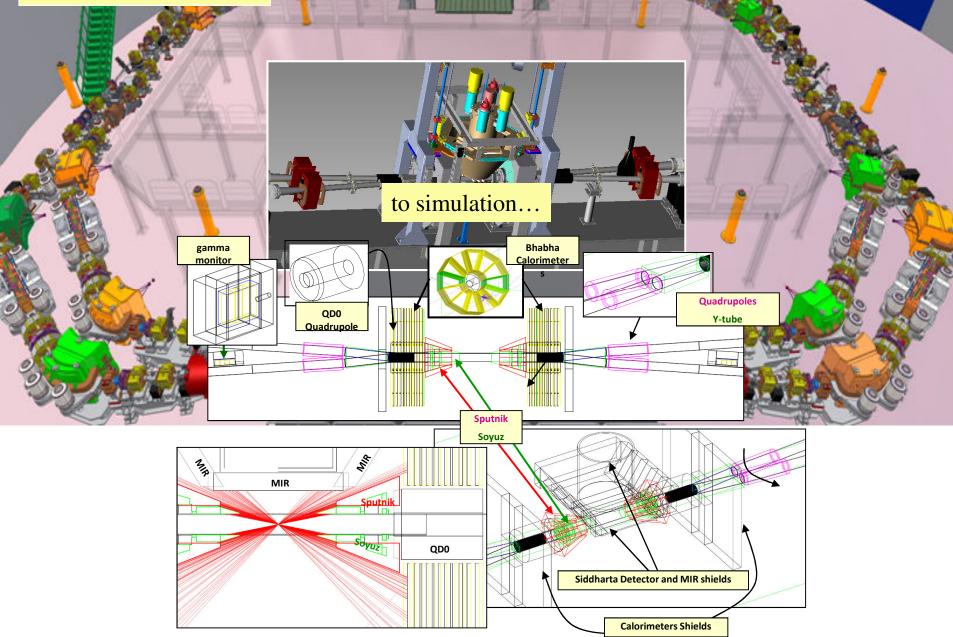
Much higher luminosity!

2. β_v comparable with σ_z

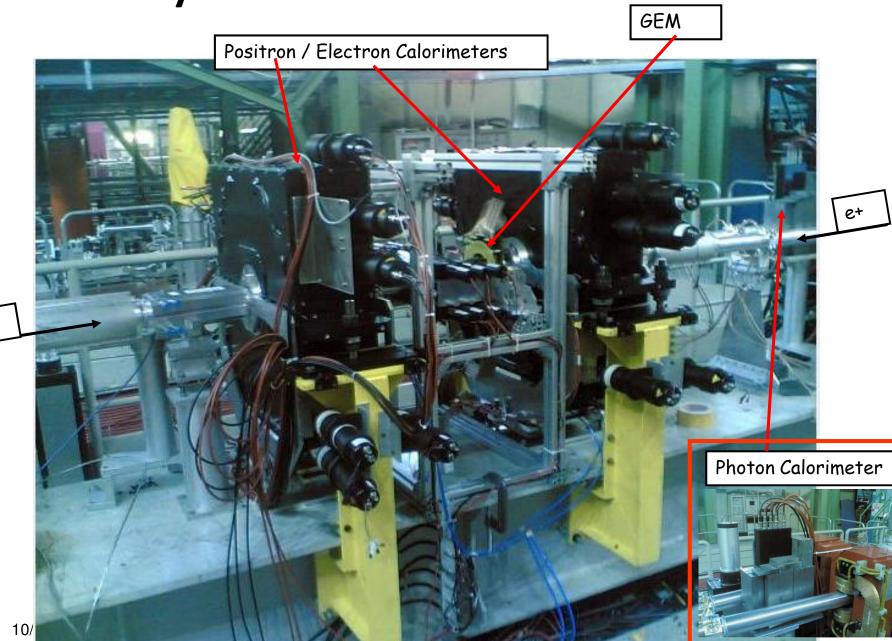
- 1. large Piwinski angle $\Phi >> 1$
- 2. β_v comparable with σ_x/θ

After some iterations, here are the parameter of the machine :

Luminosity x 10 ³⁶					
(1)		2,4		3,4	
					2250
	· · ·	· · · ·	· · ·		0,13
					80
			476	476	476
3570	3570	3570	3570	3570	3570
8,4E-04	9,0E-04	1,0E-03	1,0E-03	1,0E-03	1,0E-03
1,8E-04	3,0E-04	1,8E-04	3,0E-04	1,8E-04	3,0E-04
6	18	6	18	7,5	18
1,9	3,3	2,3	4,1	2,3	4,1
1733	1733	3466	3466	3466	3466
6,16	3,52	5,34	2,94	6,16	3,52
2,28	1,30	3,95	2,17	4,55	2,60
0,30	0,30	0,20	0,20	0,20	0,20
20	20	20	20	20	20
4	4	2	2	2	2
1,6	1,6	0,8	0,8	0,8	0,8
0,035	0,035	0,020	0,020	0,020	0,020
5,657	5,657	4,000	4,000	4,000	4,000
6	6	6	6	6	6
34	34	34	34	34	34
4	2	4	4	4	4
32/16	32/16	25/12.5	25/12.5	25/12.5	25/12.5
10,4	5,9	7,4	4,1	6,1	3,5
5,5	38	· · · · · · · · · · · · · · · · · · ·	19	· · · · · · · · · · · · · · · · · · ·	15
	5,1		3,4	1,7	2,8
4.9E+11	2.0E+11	1.5E+12	5.0E+11	2.1E+12	7.2E+11
0.004/0.17	0.004/0.17	0.007/0.16	0.007/0.16	0.009/0.2	0.009/0.2
1	1				4
	1,8E-04 6 1,9 1733 6,16 2,28 0,30 20 4 1,6 0,035 5,657 6 34 4 32/16 10,4 5,5 3,6 4,9E+11 0.004/0.17	0,13 0,13 0 80 476 476 3570 3570 8,4E-04 9,0E-04 1,8E-04 3,0E-04 6 18 1,9 3,3 1733 1733 6,16 3,52 2,28 1,30 0,30 0,30 20 20 4 4 1,6 1,6 0,035 0,035 5,657 5,657 6 6 34 34 4 2 32/16 32/16 3,6 5,1 4,9E+11 2,0E+11	2250 2250 2250 0,13 0,13 0,13 0 80 0 476 476 476 3570 3570 3570 8,4E.04 9,0E.04 1,0E.03 1,8E.04 3,0E.04 1,8E.04 6 18 6 1,9 3,3 2,3 1733 1733 3466 6,16 3,52 5,34 2,28 1,30 3,95 0,30 0,30 0,20 20 20 20 4 4 2 1,6 1,6 0,8 0,035 0,035 0,020 5,657 5,657 4,000 6 6 6 34 34 34 4 2 4 32/16 32/16 25/12.5 10,4 5,9 7,4 5,5 38 2,9 3,6 5,1	2250 2250 2250 2250 0,13 0,13 0,13 0,13 0 80 0 80 476 476 476 476 3570 3570 3570 3570 8,4E-04 9,0E-04 1,0E-03 1,0E-03 1,8E-04 3,0E-04 1,8E-04 3,0E-04 6 18 6 18 1,9 3,3 2,3 4,1 1733 1733 3466 3466 6,16 3,52 5,34 2,94 2,28 1,30 3,95 2,17 0,30 0,30 0,20 0,20 20 20 20 20 20 4 4 2 2 1,6 1,6 1,6 1,6 0,8 0,8 0,020 0,035 0,035 0,020 0,020 5,657 5,657 5,657 4,000 4,000 6	2250 2250 2250 2250 2250 $0,13$ $0,13$ $0,13$ $0,13$ $0,13$ 0 80 0 80 0 476 476 476 476 476 476 476 476 3570 3570 3570 3570 $8,4E.04$ $9,0E.04$ $1,0E.03$ $1,0E.03$ $1,8E.04$ $3,0E.04$ $1,8E.04$ $3,0E.04$ $1,8E.04$ 6 18 6 18 $7,5$ $1,9$ $3,3$ $2,3$ $4,1$ $2,3$ 1733 1733 3466 3466 3466 $6,16$ $3,52$ $5,34$ $2,94$ $6,16$ $2,28$ $1,30$ $3,95$ $2,17$ $4,55$ $0,30$ $0,30$ $0,20$ $0,20$ 20 20 20 20 20 20 4 4 2 2 2 $1,6$ $1,6$ $0,8$ $0,8$ $0,8$ $0,035$ $0,035$ $0,020$ $0,020$ $0,020$ $5,657$ $5,657$ $4,000$ $4,000$ $4,000$ 6 6 6 6 6 34 34 34 34 34 4 2 2 $25/12.5$ $25/12.5$ $10,4$ $5,9$ $7,4$ $4,1$ $6,1$ $5,5$ 38 $2,9$ 19 $2,3$ $3,6$ $5,1$ $2,1$ $3,4$ $1,7$ $4,9E+11$ $2,0E+11$ $1,5E+12$ $5,0E+11$ </th

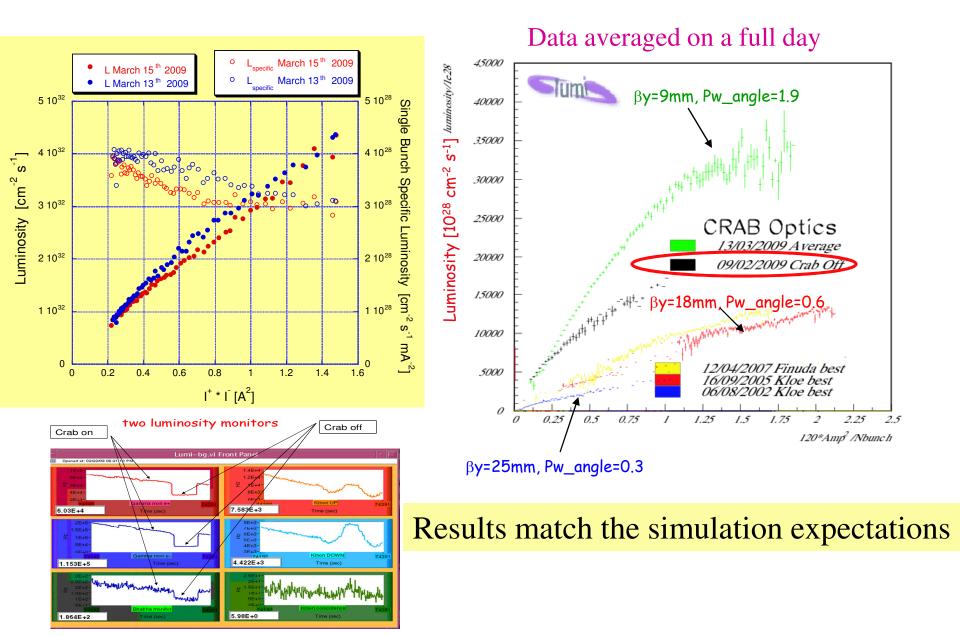

•Possibility of energy scaling to work at the τ /charm center of mass with an estimated luminosity loss of an order of magnitude.

 $10^{36} \text{cm}^{-2} \text{ sec}^{-1} \rightarrow 10 \text{ab}^{-1} \text{ per year}$


 $3,4\times10^{36}$ cm⁻² sec⁻¹ \rightarrow ~35ab⁻¹ per year

From design....

Test of these new colliding schemes in Frascati



To Reality...

e-

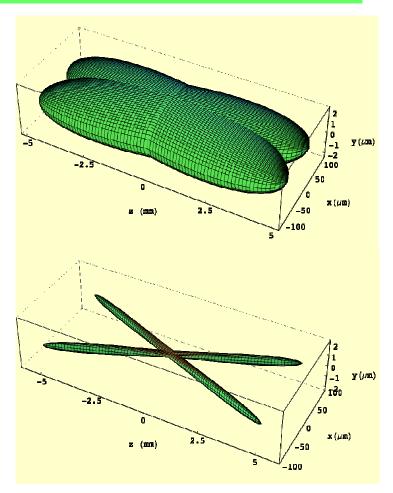
DAFNE Luminosity results

How to extrapolate the Dafne results to SuperB?

Synergy with ILC

Unit	$\operatorname{Super} B$	SuperB	ILC
	LER	HER	DRs
Beam energy (GeV)	4	7	5
Circumference (m)	2249	2249	6695
Particles per bunch	6.16×10^{10}	3.52×10^{10}	2×10^{10}
Number of bunches	1733	1733	2767
Average current (Λ)	2.28	1.30	0.40
Horizontal emittance (nm)	1.6	1.6	0.8
Vertical emittance (pm)	4	4	2
Bunch length (mm)	6	6	9
Energy spread $(\%)$	0.084	0.09	0.13
Momentum compaction	$1.8 imes 10^{-4}$	$3.1 imes 10^{-4}$	4.2×10^{-4}
Transverse damping time (ms)	32	32	25
RF voltage (MV)	6	18	24
RF frequency (MHz)	476	476	650

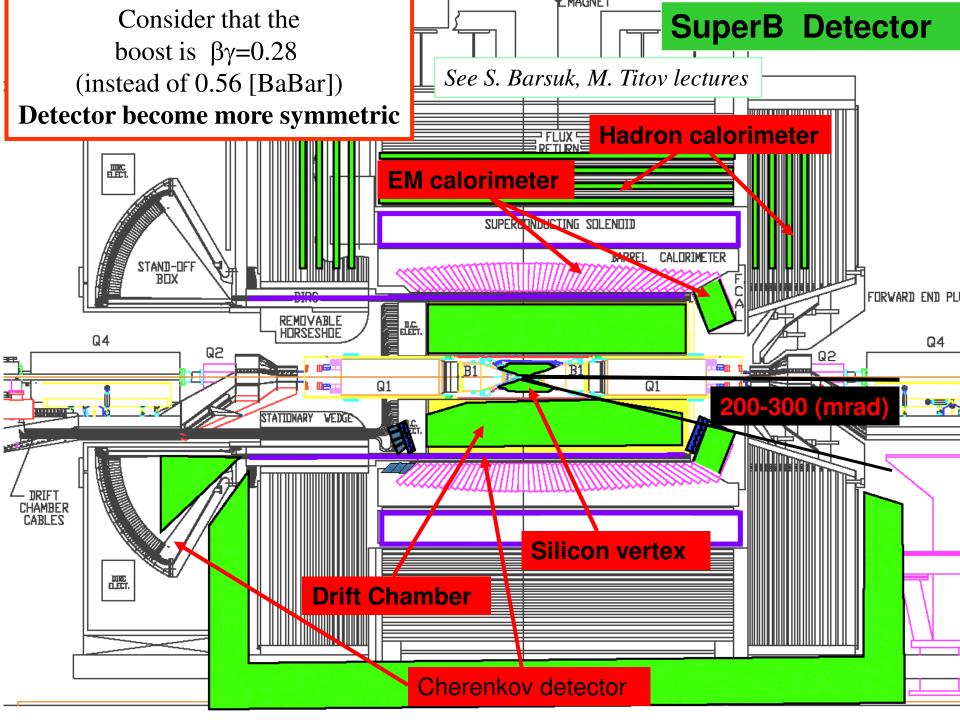
RINGS


Parameter	Early ILC-like	$\operatorname{Super} B$
Horizontal emittance ε_x (nm-rad)	0.8	1.6
Vertical emittance $\varepsilon_y~({\rm pm\text{-}rad})$	2	4
IP horizontal β_x (mm)	9	20
IP vertical β_y (mm)	0.08	0.30
Horizontal beam size σ_x (µm)	2.67	5.66
Vertical beam size σ_y (nm)	12.6	35
Bunch length σ_z (mm)	6	6
Momentum spread $\sigma_e~(\times 10^{-4}$	10	8.4 (9.0)
Crossing angle θ (mrad)	2×25	2×17
No. particles/bunch $N_{part}~(\times 10^{10})$	2.5	6.2(3.5)
No. bunches ${\cal N}_{bunch}$	6000	1733

IP

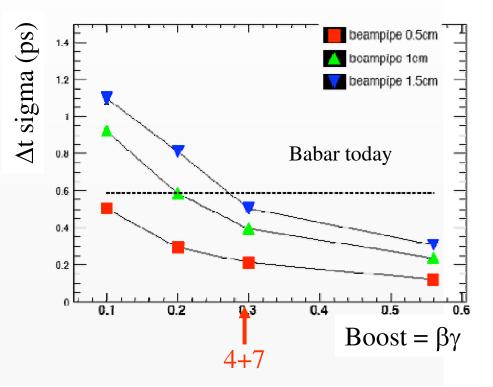
Comparison of SuperB to Super-KEKB (their option until a 1 month ago..)

Parameter	Units	SuperB	Super-KEKB
Energy	GeV	4x7	3.5x8
Luminosity	10 ³⁶ / cm ² /s	1.0 to 2.0	0.5 to 0.8
Beam currents	Α	1.9x1.9	9.4x4.1
β _y *	mm	0.22	3.
β _x *	cm	3.5x2.0	20.
Crossing angle (full)	mrad	48.	30. to 0.
RF power (AC line)	MW	20 to 25	80 to 90
Tune shifts	(x/y)	0.0004/0.2	0.27/0.3
luminosity		10 ³⁶	5×10 ³⁵


IP beam distributions for KEKB

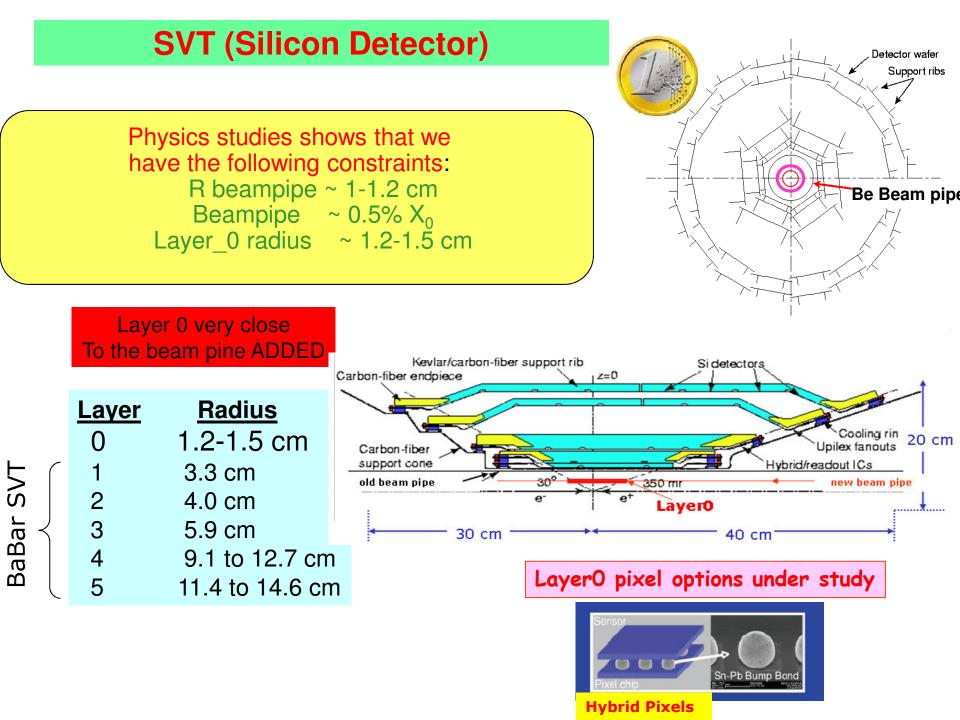
100 times more luminosity obtained just with 100 times smaller vertical beam

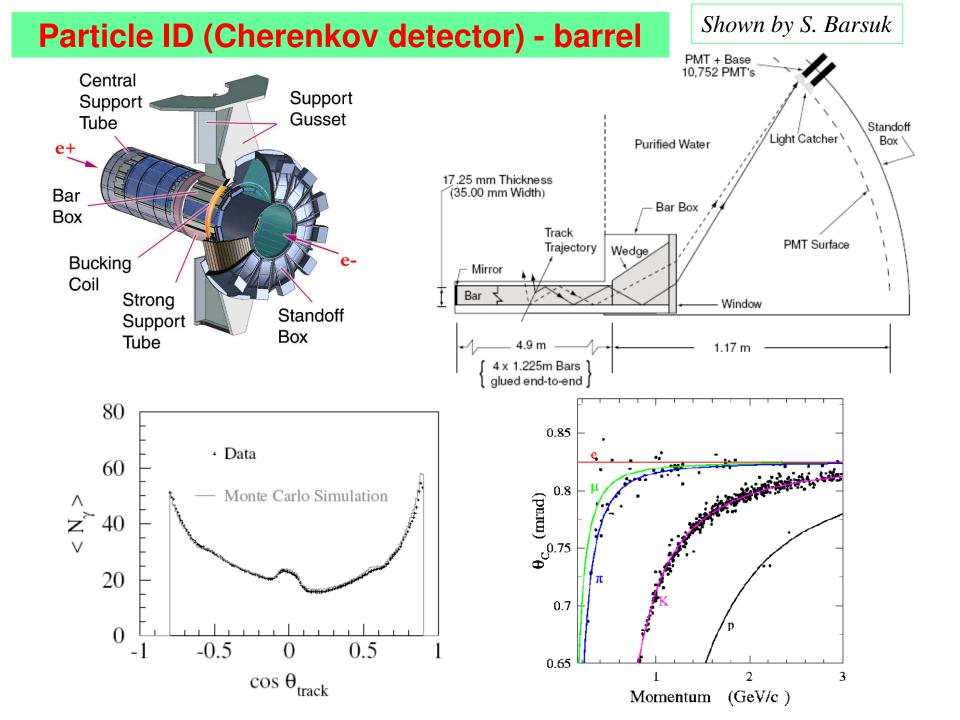
IP beam distributions for *SuperB*



Baseline interaction region defined

- 300 mrad line separating detector from accelerator, backward and forward
- No support tube
 - although magnet support still needs to be fleshed out
- 1 cm inner radius of the beam pipe


Forw (mrad)	Back (mrad)	Coverage
350	500	91.2%
350	350	93.1%
300	300	94.9%
200	200	97.7%
100	100	99.4%



Energy asymmetry

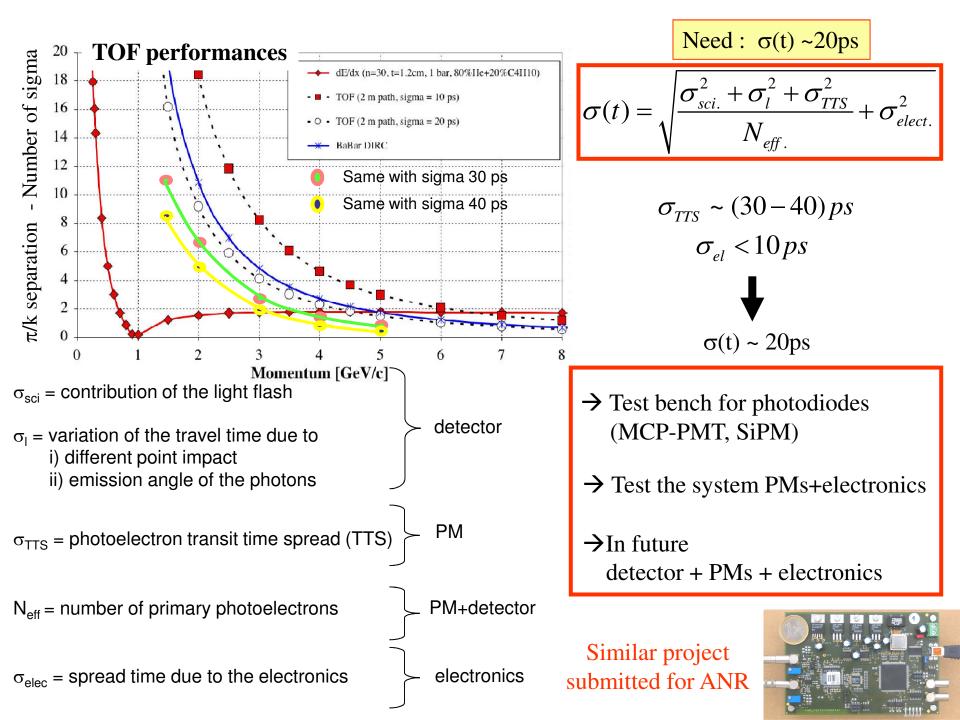
 4x7 ok if we can use a 1cm beam pipe and get enough vertex resolution.

In the following just few example of sub-detectors

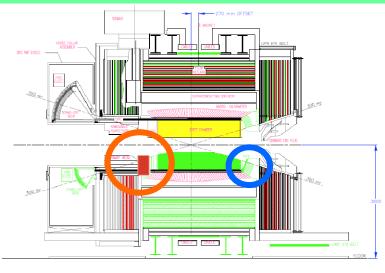
PID in the forward region

Very little space between the Drift Chamber and the Electomagnetic Calorimeter.

The principle of time of flight (TOF)

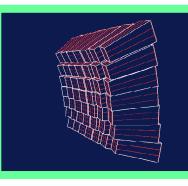

Master formula 1

Two particles m1, m2, with same momentum flying a distance L, have a Δt time flight difference given by


$$\Delta t \approx \frac{Lc}{2p^2} \left(m_1^2 - m_2^2 \right)$$
Dependence on 1/p²

Same example π/K separation for p=1GeV/c and L=2m $\rightarrow \Delta t$ =~760ps p=3GeV/c " $\rightarrow \Delta t$ =~80ps

So if we want 4σ separation of π/K up to 3 GeV/c we need a time resolution $\sigma(t)$ ~20ps



EMC – forward

Crystal	CsI(Tl)	CsI	LSO
τ decay(ns)	680,	16	47
	3340		
$\chi_0({ m cm})$	1.86	1.86	1.14
R_{moliere} (cm)	3.8	3.8	2.3
λ_{nuclear} (cm)	37	37	
$LY (\gamma/MeV)$	56000,	2500	27000
	64:36%		
λ peak (nm)	550	315	420
Rad Hard (Mrad)	.01	.011	100
$\rho ~(g/cm3)$	4.51	4.51	7.40
n_0	1.79	1.95	1.82

We need

- \rightarrow A crystal with a smaller Molière radius
- \rightarrow A crystal that is more radiation hard
- →A crystal with a faster decay time (occupancy at lower angle)

See S. Barsuk lecture

Why not, you ask, use PbWO4?

→ Because we need a crystal that produces more light than a lead brick

We have an excellent candidate in LSO/LYSO,

Conclusions

SuperB (L>10³⁶) is a discovery machine at the TeV scale

→ Measurable effects (anyhow) if NP particles with masses at the <u>TeV scale</u> → Give also the opportunity of exploring NP scales of the several TeV

Machine is challenging and based on new accelerating schemes : "crab waist" : luminosity > 10³⁶ possible !

Success of Frascati tests has proven that they work !

Detector largely inspired from Babar one will be largely improved

AREA for the SuperB and SPARX

Projects Google

Discussion on going. Possible also in Frascati site. → The TDR phase has started and financed (18MEuros)
 Proto-Collaboration formed → The approuval of the project could already happen during this phase (from now to mid-2010)

If you want to join SuperB-project you are welcome !

Backup Material

Try to reuse parts of Babar as much as possible

-Quartz bars of the DIRC

-Barrel EMC CsI(Tl) crystal and mechanical structure

-Superconducting coil and flux return yoke.

R&D and engineering required

- Small beam pipe technology
- Thin silicon pixel detector for first layer
- Drift chamber CF mechanical structure, gas and cell size
- Photon detection for DIRC quartz bars
- Forward PID system (TOF or focusing RICH)
- Forward calorimeter crystals (LSO)
- Minos-style scintillator for Instrumented flux return
- Electronics and trigger
- Computing large data amount

Milestones

• What Next

Super B project status

- The Italian process
- The European process
- The US process
- Interferences with KEK roadmap?

First Report of the International Review Committee (IRC) for the SuperB⁷ Project

Hiroaki Aihara, John Dainton, Rolf Heuer, Young Kee Kim, Jacques Lefrançois, Antonio Masiero, Steve Myers, Tatsuya Nakada², Daniel Schulte, Abe Seiden

Roma, May 21st 2008

5. Conclusion

We recommend strongly that work towards the realisation of a SuperB continues.

The project positively received by the IRC

unique sensitivity to flavour in new physics
 indirect energy reach < ~ 10 TeV ?

 new flavour physics beyond few TeV
 SuperB = (indirect) energy frontier → discovery

machine

 continue evaluation to establish physics specification The SuperB concept is at an important stage. The significance of the physics programme at such a machine continues to be developed, increasing in both scope and importance. It motivates an even more concerted effort to meet many technical challenges, in particular concerned with the design of storage rings which meet the physics specification.

So far there has been no "showstopper"; rather there have emerged a number of innovative and noteworthy developments at the cutting-edge of contemporary technique in accelerator physics and detector technology. There still remains the possibility of insurmountable technical challenges, in particular in establishing the physics of machine performance which, in some aspects, address fundamental issues of accelerator physics. Beginning as soon as possible, these challenges must be considered as rapidly as possible if progress is to continue with the aim of realising Super*B* on the proposed time schedule.

It is clear from the above that it is essential at this time to ensure appropriate conservation and preservation of detector and machine components from PEP2 and *BABAR* which could be incorporated into Super*B*.

Latest News 19th Dec 2008,

from Marcello Giorgi

"...It is a great pleasure to annonce you that <u>INFN Board of Directors has endorsed</u> <u>the SuperB as a special project</u>. The consensus was unanimously expressed after a long and exhausting discussion. <u>The implications are that thereb is no obstacle to</u> <u>proceed with the TDR and to move to the construction of the strong organization that</u> <u>we need.</u>

The project will receive the financial support ain a very generous way by the Lazio Regional government. Roberto Petronzio after the vote of the Board was authorized by the Lazio government to officially announce this contribution that could fully cover the cost of the project preparation,

In addition INFN will give extra money through the Gruppo I. Nando Ferroni, chair of Gruppo I, confirmed in front of the Board. INFN will ask us periodical reports to the Board of Directors, to monitor the process.

Roberto Petronzio has also communicated that the funding process for construction with the National Italian Governement has started and in good shape

The European process

- 8. Flavour physics and precision measurements at the highluminosity frontier at lower energies complement our understanding of particle physics and allow for a more accurate interpretation of the results at the high-energy frontier; these should be led by national or regional collaborations, and the participation of European laboratories and institutes should be promoted.
- European strategy recognition process
 - SuperB project presented to he CERN Council in September 2008. recognition possible in March 2009
 - ECFA subgroup report in Nov 2008

Report on the INFN Super Flavour Factory Project

Working Group set up by the restricted meeting of ECFA

Y. Karyotakis (LAPP, France), F. Linde (Nikhef, the Netherlands), B. Spaan (Uni. Dortmund, Germany) Chaired by T. Nakada (EPFL, Switzerland)

Introduction

INFN requested European Committee for Future Accelerator (ECFA) to form an opinion on their Super Flavour Factory project during its restricted meeting (RECFA) in Lisbon on 29th of March 2008. Following a proposal by the ECFA chair, K. Meier, RECFA asked one of its members, T. Nakada, to form and chair an internal working group who should prepare a report, which should then be endorsed by ECFA. The working group consists of the four authors of this report. The report consists of a physics section describing the current status of flavour physics and the significance of a future Super Flavour Factory, a short description of the INFN project as understood by the working group, consideration of the global situation, and finally a summary.

ECFA report summary - 1

- We consider that flavour physics should be seen as an important part of the European research programme of elementary particle physics, complementary to physics provided by the energy frontier experiments. For the coming ~5 years, LHCb will do this job in the b and c quark sectors. To follow-up this progress, collecting 50 ab-1 or more at Y(4S) energy with e+e-storage rings by the end of the next decade would be a significant milestone, if this can be realised at a moderate cost.
- The INFN Super Flavour Factory project team proposes a novel scheme to obtain luminosity of ≥1036 cm-2s-1, two orders of magnitude more than what has been achieved up to now, without increasing the beam currents. This is a distinct advantagefor some of the machine operation aspects and background to the experiment, as well as for the running cost of the machine. This idea of obtaining a high luminosity with tiny beam spots at the collision point based on very small emittance beams and crab waist collisions could revolutionize the design of the future colliders. Therefore, westrongly support the R&D effort to see if such a machine can really be built.

ECFA report summary –Part 2

- The current tests at DAFNE are promising and we would like to congratulate the team for this impressive achievement. However, a substantial amount of work is still required for producing a Technical Design Report, which will be a base for establishing an international consortium for the realisation of the project. A strong core team of experienced accelerator physicists and engineers based at one location should be established already for the TDR work. Without it, contributions from the various interested laboratories cannot be effectively utilized. A strong team of experienced machine physicists will be needed also for the operation. This machine has to achieve its design luminosity in order to be truly competitive.
- Given the complexity of the project, we feel that a clear plan containing realistic technical milestones and resource requirements together with a strategy how to obtain them is needed as a necessary condition for an approval of the project.
- Such a plan should aim at obtaining an integrated luminosity of significantly more than 50 ab-1 by not much later than the end of the next decade. Given the very ambitious time scale, a clear decision taking process must be established soon.

Eureopean steps in three steps :

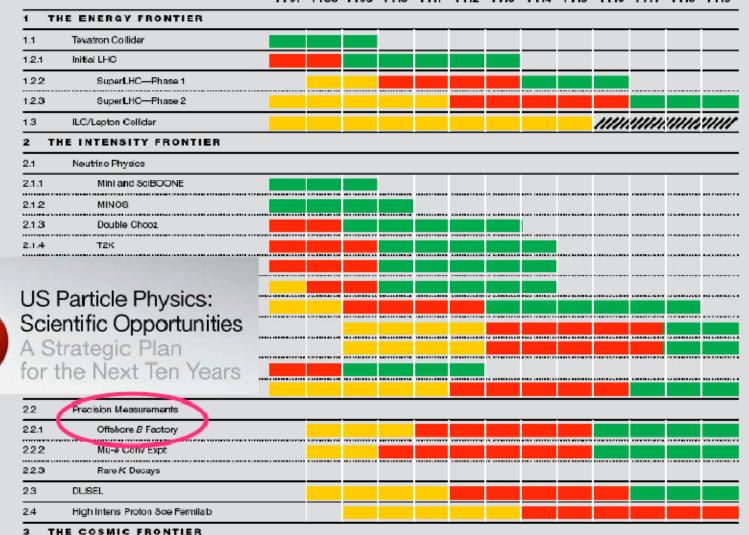
- Initial Presentation to Council(Done in Sept 2008): Council takes note
- SPC advises council : Council takes note and comments: March/June 2009
- Formal recognition once the project is approved

CERN/SPC/914 CERN-Council-S/030 Original: English 27 November 2008

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE CERN European organization for nuclear research

Action to be taken	Voting Proceedure	
For Information	SCIENTIFIC POLICY COMMITTEE 259 th Meeting 8 & 9 December 2008	
For Approval	EUROPEAN STRATEGY SESSION OF COUNCIL RESTRICTED 5 [*] Session 11 December 2008	Simple Majority of Member States represented and voting

RECOGNITION AND FOLLOW-UP OF PROJECTS RELEVANT TO THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS

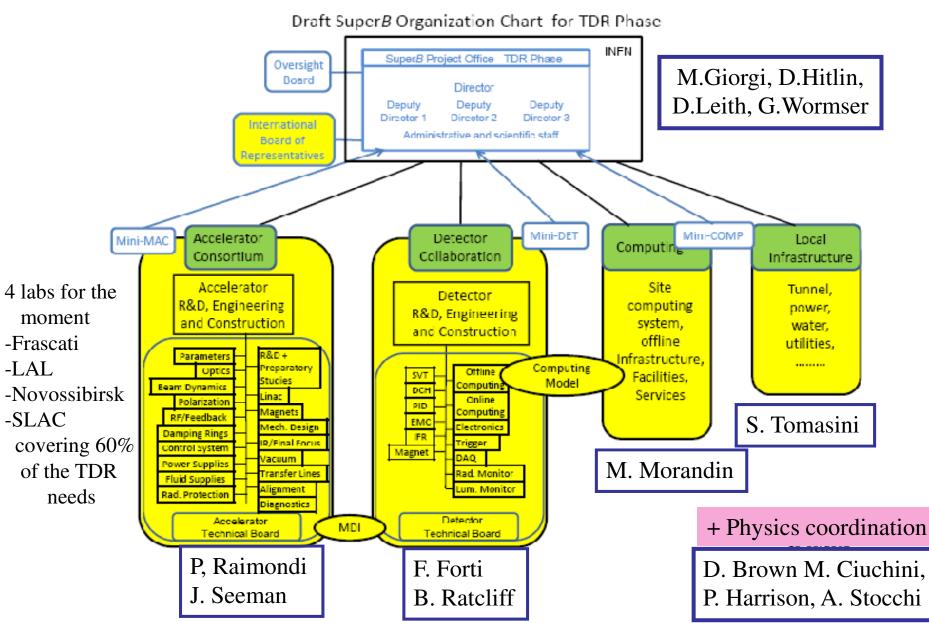

The Council is invited to take note of this document, which sets out the implementation details for the remit of the European Strategy Session of Council, described in paragraph 3.1 of document CERN/2732/Rev. In particular, the Council is invited to approve the procedure set out in section 3 relating to the recognition and follow-up of projects relevant to the European Strategy for Particle Physics by the European Strategy Sessions of Council.

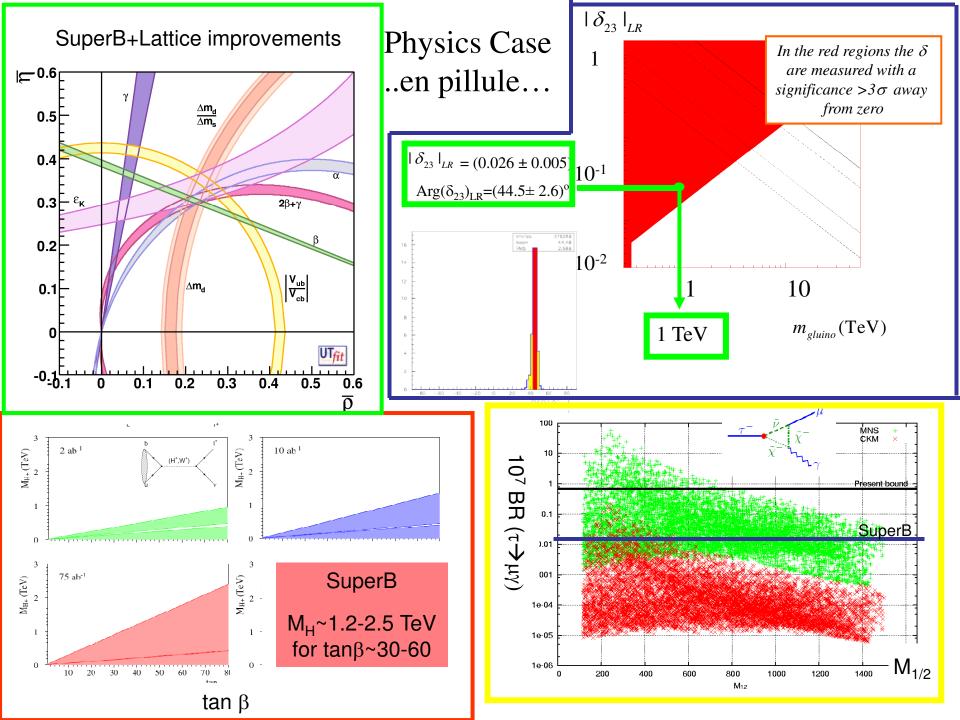
One offshore Super B factory project official part of the US P5 report in « scenario B »

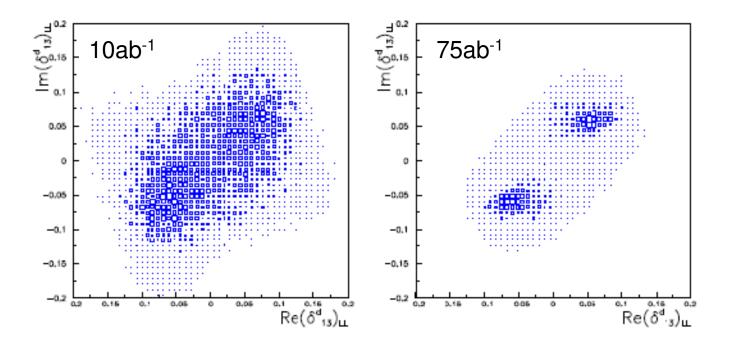
International context: US

Roadmap for the Scenario with Constant level of Effort at the FY2007 Level

FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 FY16 FY17 FY18 FY19






Interactions with Japan

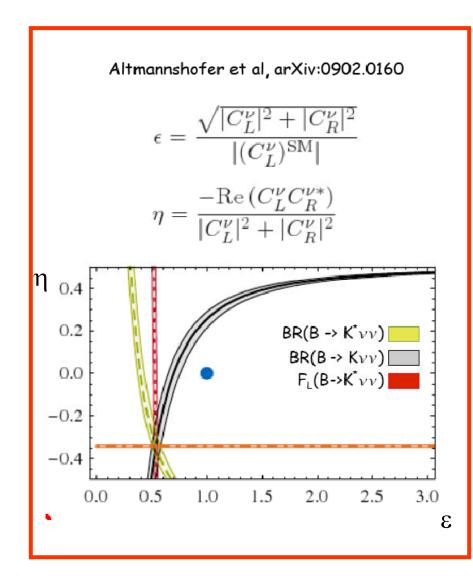
- KEKB upgrade part of KEK roadmap
- Nobel prize effect?
- Interference with SuperB project negative or positive?
- The « one joint program , two phases » model ?
 - Today there are two KEK machine
 physicists doing machine simulation in
 Frascati

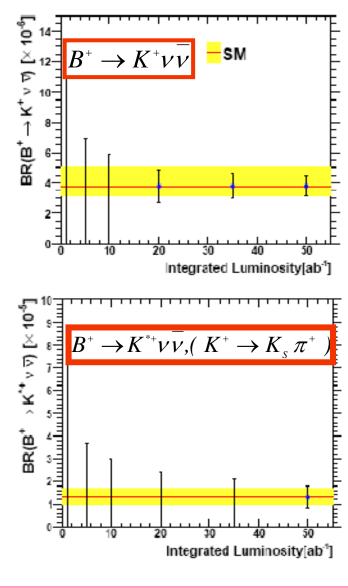
TDR organisation

Determination of Susy mass insertion parameter $(\delta_{13})_{LL}$ with 10 ab⁻¹ and 75 ab⁻¹

Importance of having very large sample >75ab⁻¹

GOLDEN MODES


	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
	high $ an\!\beta$	$_{\rm FV}$	FV (1-3)	FV (2-3)	Z-penguins	currents
$\mathcal{B}(B \to X_s \gamma)$		Х				
$A_{CP}(B \to X_s \gamma)$				X		
$\mathcal{B}(B \rightarrow \tau \nu)$	X- CKM					
$\mathcal{B}(B \rightarrow X_s l^+ l^-)$)					
$\mathcal{B}(B \to K \nu \overline{\nu})$					X	X
$S(K_S \pi^0 \gamma)$			V CUM			V
β			X- CKM			X


X The GOLDEN channel for the given scenario

Not the GOLDEN channel for the given scenario but can show experimentally measurable deviations from SM.

Branching fraction $Br(B \rightarrow K \nu \nu)$

Today The best UL < 14 10⁻⁶ SM BF= 4 10⁻⁶

~20ab⁻¹ are needed for observation >50ab⁻¹ for precise measurement

Charm Physics

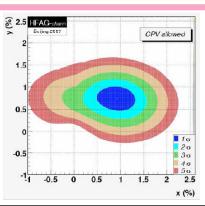
@threshold(4GeV)

Charm physics using the charm produced at Y(4S)

Charm physics at threshold 0.3 ab⁻¹

Consider that running 2 month at threshold we will collect 500 times the stat. of CLEO-C

Strong dynamics and CKM measurements


D decay form factor and decay constant @ 1% Dalitz structure useful for γ measurement

 ξ ~1%, exclusive V_{ub} ~ few % syst. error on γ from Dalitz Model <1°

Rare decays FCNC down to 10⁻⁸

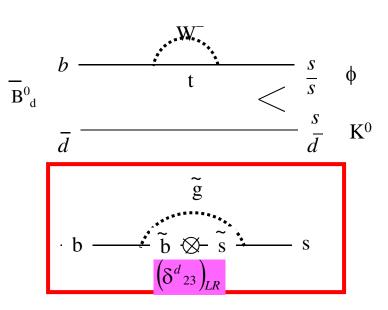
$\begin{tabular}{ c c c c }\hline Channel & Sensitivity \\\hline \hline D^0 \to e^+e^-, \ D^0 \to \mu^+\mu^- & 1 \times 10^{-8} \\\hline D^0 \to \pi^0 e^+ e^-, \ D^0 \to \pi^0 \mu^+\mu^- & 2 \times 10^{-8} \\\hline D^0 \to \eta e^+ e^-, \ D^0 \to \eta \mu^+\mu^- & 3 \times 10^{-8} \\\hline D^0 \to K_S^0 e^+ e^-, \ D^0 \to K_S^0 \mu^+\mu^- & 3 \times 10^{-8} \\\hline D^+ \to \pi^+ e^+ e^-, \ D^+ \to \pi^+ \mu^+ \mu^- & 1 \times 10^{-8} \\\hline D^0 \to e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^0 \to \pi^0 e^\pm \mu^\mp & 2 \times 10^{-8} \\\hline D^0 \to \eta e^\pm \mu^\mp & 3 \times 10^{-8} \\\hline D^0 \to \eta e^\pm \mu^\mp & 3 \times 10^{-8} \\\hline D^0 \to \eta e^\pm \mu^\mp & 3 \times 10^{-8} \\\hline D^0 \to \pi^- e^\pm \mu^\mp & 3 \times 10^{-8} \\\hline D^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\\hline D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- e^\pm \mu^\mp & D^+ \to K^- e^\pm \mu^\mp & 1 \times 10^{-8} \\\hline D^+ \to \pi^- \Phi^- \Phi^- \Phi^- \Phi^- \Phi^- \Phi^- \Phi^- \Phi^- \Phi^- \Phi$	•	
$ \begin{array}{lll} D^{0} \to \pi^{0} e^{+} e^{-}, \ D^{0} \to \pi^{0} \mu^{+} \mu^{-} & 2 \times 10^{-8} \\ D^{0} \to \eta e^{+} e^{-}, \ D^{0} \to \eta \mu^{+} \mu^{-} & 3 \times 10^{-8} \\ D^{0} \to K_{S}^{0} e^{+} e^{-}, \ D^{0} \to K_{S}^{0} \mu^{+} \mu^{-} & 3 \times 10^{-8} \\ D^{+} \to \pi^{+} e^{+} e^{-}, \ D^{+} \to \pi^{+} \mu^{+} \mu^{-} & 1 \times 10^{-8} \\ \end{array} $	Channel	Sensitivity
$ \begin{array}{lll} D^{0} \to \eta e^{+}e^{-}, D^{0} \to \eta \mu^{+}\mu^{-} & 3 \times 10^{-8} \\ D^{0} \to K_{S}^{0}e^{+}e^{-}, D^{0} \to K_{S}^{0}\mu^{+}\mu^{-} & 3 \times 10^{-8} \\ D^{+} \to \pi^{+}e^{+}e^{-}, D^{+} \to \pi^{+}\mu^{+}\mu^{-} & 1 \times 10^{-8} \\ \end{array} \\ \begin{array}{lll} D^{0} \to e^{\pm}\mu^{\mp} & 1 \times 10^{-8} \\ D^{0} \to \pi^{0}e^{\pm}\mu^{\mp} & 2 \times 10^{-8} \\ D^{0} \to \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \to K_{S}^{0}e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ \end{array} \\ \begin{array}{lll} D^{+} \to \pi^{-}e^{+}e^{+}, D^{+} \to K^{-}e^{+}e^{+} & 1 \times 10^{-8} \\ D^{+} \to \pi^{-}\mu^{+}\mu^{+}, D^{+} \to K^{-}\mu^{+}\mu^{+} & 1 \times 10^{-8} \end{array} $	$D^0 \rightarrow e^+e^-, D^0 \rightarrow \mu^+\mu^-$	1×10^{-8}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^0 ightarrow \pi^0 e^+ e^-, \ D^0 ightarrow \pi^0 \mu^+ \mu^-$	$2 imes 10^{-8}$
$\begin{array}{cccc} D^+ \to \pi^+ e^+ e^-, \ D^+ \to \pi^+ \mu^+ \mu^- & 1 \times 10^{-8} \\ \\ D^0 \to e^\pm \mu^\mp & 1 \times 10^{-8} \\ D^+ \to \pi^+ e^\pm \mu^\mp & 1 \times 10^{-8} \\ D^0 \to \pi^0 e^\pm \mu^\mp & 2 \times 10^{-8} \\ D^0 \to \eta e^\pm \mu^\mp & 3 \times 10^{-8} \\ D^0 \to K_S^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ D^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \end{array}$	$D^0 ightarrow \eta e^+ e^-, D^0 ightarrow \eta \mu^+ \mu^-$	$3 imes 10^{-8}$
$ \begin{array}{lll} D^{0} \to e^{\pm} \mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \to \pi^{+} e^{\pm} \mu^{\mp} & 1 \times 10^{-8} \\ D^{0} \to \pi^{0} e^{\pm} \mu^{\mp} & 2 \times 10^{-8} \\ D^{0} \to \eta e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \to K_{S}^{0} e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ D^{+} \to \pi^{-} e^{+} e^{+}, D^{+} \to K^{-} e^{+} e^{+} & 1 \times 10^{-8} \\ D^{+} \to \pi^{-} \mu^{+} \mu^{+}, D^{+} \to K^{-} \mu^{+} \mu^{+} & 1 \times 10^{-8} \end{array} $	$D^0 ightarrow K^0_{\scriptscriptstyle S} e^+ e^-, D^0 ightarrow K^0_{\scriptscriptstyle S} \mu^+ \mu^-$	$3 imes 10^{-8}$
$\begin{array}{ccccc} D^+ \to \pi^+ e^\pm \mu^\mp & 1 \times 10^{-8} \\ D^0 \to \pi^0 e^\pm \mu^\mp & 2 \times 10^{-8} \\ D^0 \to \eta e^\pm \mu^\mp & 3 \times 10^{-8} \\ D^0 \to K_S^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \end{array}$	$D^+ \rightarrow \pi^+ e^+ e^-, \ D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$1 imes 10^{-8}$
$\begin{array}{ccccc} D^+ \to \pi^+ e^\pm \mu^\mp & 1 \times 10^{-8} \\ D^0 \to \pi^0 e^\pm \mu^\mp & 2 \times 10^{-8} \\ D^0 \to \eta e^\pm \mu^\mp & 3 \times 10^{-8} \\ D^0 \to K_S^0 e^\pm \mu^\mp & 3 \times 10^{-8} \\ D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \end{array}$		
$ \begin{array}{cccc} D^{0} \to \pi^{0} e^{\pm} \mu^{\mp} & 2 \times 10^{-8} \\ D^{0} \to \eta e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \to K_{S}^{0} e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ \end{array} \\ \begin{array}{c} D^{+} \to \pi^{-} e^{+} e^{+}, \ D^{+} \to K^{-} e^{+} e^{+} & 1 \times 10^{-8} \\ D^{+} \to \pi^{-} \mu^{+} \mu^{+}, \ D^{+} \to K^{-} \mu^{+} \mu^{+} & 1 \times 10^{-8} \end{array} $	$D^0 \to e^{\pm} \mu^{\mp}$	1×10^{-8}
$ \begin{array}{ccc} D^{0} \to \eta e^{\pm} \mu^{\mp} & & 3 \times 10^{-8} \\ D^{0} \to K_{S}^{0} e^{\pm} \mu^{\mp} & & 3 \times 10^{-8} \\ \end{array} \\ \\ D^{+} \to \pi^{-} e^{+} e^{+}, \ D^{+} \to K^{-} e^{+} e^{+} & 1 \times 10^{-8} \\ D^{+} \to \pi^{-} \mu^{+} \mu^{+}, \ D^{+} \to K^{-} \mu^{+} \mu^{+} & 1 \times 10^{-8} \end{array} $	$D^+ \to \pi^+ e^\pm \mu^\mp$	1×10^{-8}
$\begin{split} D^{0} &\to K^{0}_{S} e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ D^{+} &\to \pi^{-} e^{+} e^{+}, \ D^{+} &\to K^{-} e^{+} e^{+} & 1 \times 10^{-8} \\ D^{+} &\to \pi^{-} \mu^{+} \mu^{+}, \ D^{+} &\to K^{-} \mu^{+} \mu^{+} & 1 \times 10^{-8} \end{split}$	$D^0 o \pi^0 e^{\pm} \mu^{\mp}$	$2 imes 10^{-8}$
$\begin{array}{c} D^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \end{array}$	$D^0 o \eta e^{\pm} \mu^{\mp}$	$3 imes 10^{-8}$
$D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+ - 1 \times 10^{-8}$	$D^0 o K^0_{ m S} e^\pm \mu^\mp$	$3 imes 10^{-8}$
$D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+ - 1 \times 10^{-8}$		
	$D^+ \rightarrow \pi^- e^+ e^+, \ D^+ \rightarrow K^- e^+ e^+$	1×10^{-8}
$D^+ \rightarrow \pi^- e^{\pm} \mu^{\mp} D^+ \rightarrow K^- e^{\pm} \mu^{\mp} 1 \times 10^{-8}$	$D^+ \rightarrow \pi^- \mu^+ \mu^+, D^+ \rightarrow K^- \mu^+ \mu^+$	1×10^{-8}
$D / \pi c \mu$, $D / \pi c \mu$ 1×10	$D^+ \to \pi^- e^\pm \mu^\mp, D^+ \to K^- e^\pm \mu^\mp$	1×10^{-8}

D mixing Better studied using the high statistics collected at Y(4S)

@threshold(4GeV)

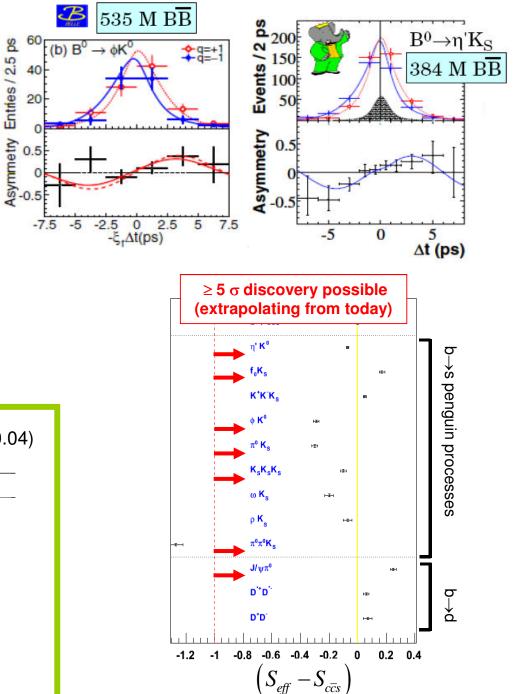
Mode	Observable	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})
$D^0 \rightarrow K^+ K^-$	y_{CP}	$2-3 \times 10^{-3}$	$5 imes 10^{-4}$
$D^0 \rightarrow K^+ \pi^-$	y'_D	$2-3 \times 10^{-3}$	$7 imes 10^{-4}$
	$x_D^{\prime 2}$	$12 imes 10^{-4}$	$3 imes 10^{-5}$
$D^0 \to K^0_{\scriptscriptstyle S} \pi^+ \pi^-$	y_D	23×10^{3}	$5 imes 10^{-4}$
	x_D	23×10^{3}	$5 imes 10^{-4}$
Average	y_D	$1-2 \times 10^{-3}$	$3 imes 10^{-4}$
	x_D	23×10^{3}	$5 imes 10^{-4}$

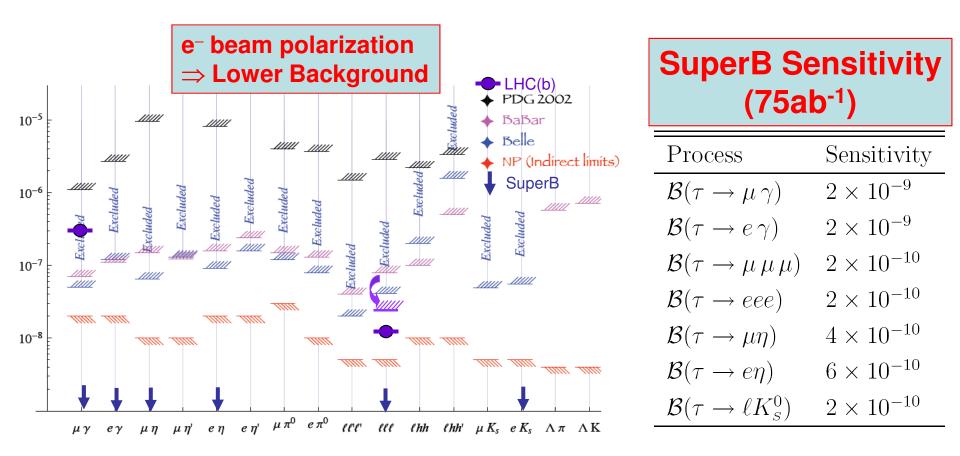
CP Violation in mixing could now addressed


Theory keeps up...

- lattice QCD can reach the O(1%) precision goal in time
- some progress for inclusive techniques for SL B decays
- non-leptonic B decays are more problematic

				T (Z URE)		the second second second
Measurement	Hadronic	Present	6 TFlops	60 TFlops	1-10 PFlops	
	Parameter	Error	o iiiopu	oo ii iops	(Year 2015)	
$K \to \pi l \nu$	$f_{+}^{K\pi}(0)$	0.9%	0.7%	0.4~%	< 0.1~%	
ε_K	\hat{B}_K	11%	5 %	3%	1%	
$B \to l \nu$	f_B	14%	3.5 - 4.5 %	2.5-4.0%	1.0-1.5~%	V. Lubicz,
Δm_d	$f_{Bs}\sqrt{B_{Bs}}$	13~%	4-5 %	3_{-4} %	$1 - 1.5 \ \%$	4 [™] SuperB Workshop
$\Delta m_d / \Delta m_s$	ξ	5 %	3 %	1.5-2~%	0.5- $0.8 %$	and
$B ightarrow D/D^{st} l u$	$\mathcal{F}_{B o D/D^*}$	4~%	2%	1.2~%	0.5 %	SuperB
$B o \pi / ho l u$	$f_+^{B\pi},\ldots$	11~%	5.5 - 6.5 %	4-5 %	2-3%	CDR
$B \to K^* / \rho \left(\gamma, l^+ l^- \right)$	$T_1^{B \to K^*/\rho}$	13~%		1 1 - 11 - 1 1	3-4%	

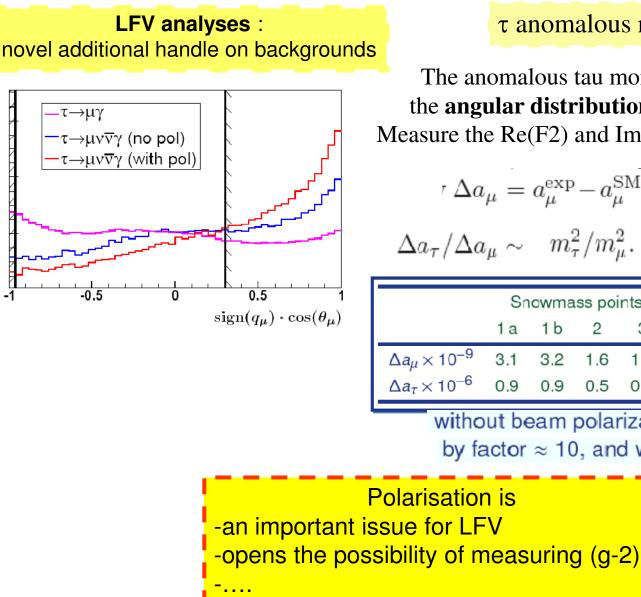

Another example of sensitivity to NP : sin2β from "s Penguins"...



Many channels can be measured with $\Delta S \sim (0.01-0.04)$

Observable	B Factories (2 ab^{-1})	SuperB
$S(\phi K^0)$	0.13	$0.02 \; (*)$
$S(\eta' K^0)$	0.05	$0.01 \; (*)$
$S(K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S})$	0.15	$0.02\;(*)$
$S(K^0_s\pi^0)$	0.15	$0.02 \; (*)$
$S(\omega K^0_s)$	0.17	0.03~(*)
$S(f_0K_s^0)$	0.12	$0.02\;(*)$

(*) theoretical limited



- LHC is *not* competitive (Re: both GPDs and LHCb).
- SuperB sensitivity ~10 50× better than NP allowed branching fractions.

Polarized beams

Polarized beam is (SuperB specific)

Normalized to Unit Area

-1

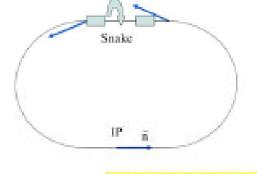
 τ anomalous moment (g-2)

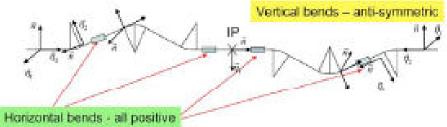
The anomalous tau momentum influence both the **angular distribution** and the τ **polarization**. Measure the Re(F2) and Im(F2) of the (g-2) from factor

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} \approx (3\pm 1) \times 10^{-9}$$
$$\Delta a_{\tau} / \Delta a_{\mu} \sim m_{\tau}^2 / m_{\mu}^2. \xrightarrow{\text{NP effects}} \Delta a_{\tau} \sim 10^{-6}$$

	Snowmass points predictions				Super <i>B</i>		
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	< 1

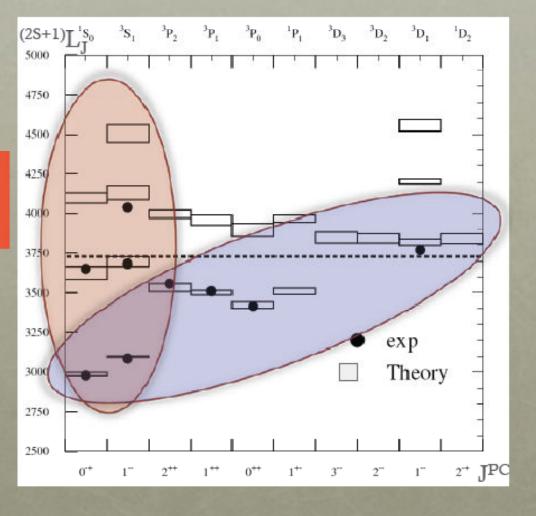
without beam polarization, expected worse by factor \approx 10, and worse systematics

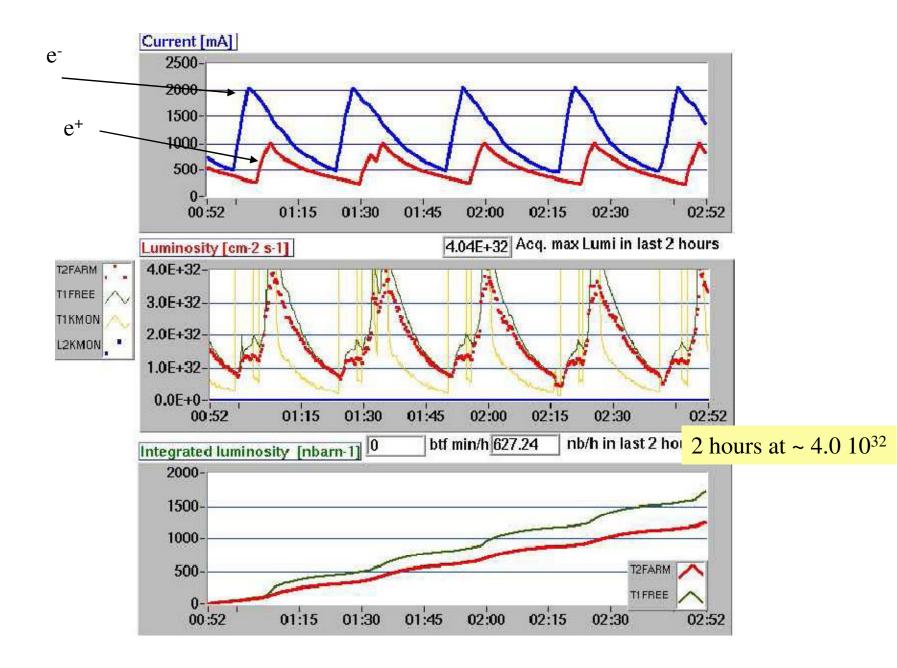

nder study



Polarisation

- In a storage ring, particle spins naturally precess around the vertical fields of the arc dipoles, at a rate determined by the particle energy.
 - This means that vertical polarisation is naturally preserved, but longitudinal polarisation can be lost without preventive measures.
- For SuperB, there are two options to maintain longitudinal polarisation in the beam at the IP:
 - Use solenoids opposite the IP, to rotate the spin by π around the longitudinal axis.
 - Use solenoids or vertical bends to rotate between vertical and longitudinal spin before and after the IP.
- Option 2 will probably work best for the multi-GeV SuperB rings, but more studies are needed.




PANDA VS SUPERB (II)

B-Factories better suited to low L and 1--

pp annihilations better suited to lower states (narrower)

Still need to compare yields on same footing!

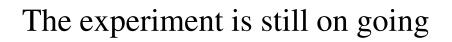
In a condense table

	PEPII	КЕКВ	SuperB
current	2.5 A	1.7 A	2.3 A
betay	10 mm	6 mm	0.3 mm
betax	400 mm	300 mm	20 mm
Emitx (sigmax)	23 nm	~ 20 nm	1,6 nm
y/x coupling	0,5-1	0.25 %	0,25 %
Bunch length	10 mm	6 mm	6 mm
τ	16/32 msec	16/32 msec	16/32 msec
ζγ	0.07	0.1	0.17
L	1.2 10 ³⁴	1.7 10 ³⁴	1 10 ³⁶

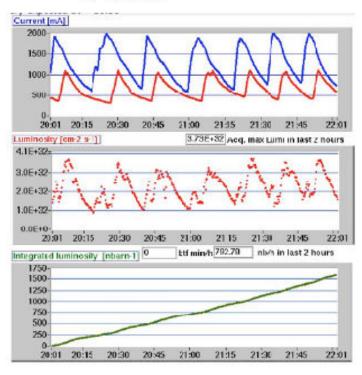
Effect of crab sextupoles on luminosity

1E+5A huge work on machine optimization has been done and is still in progress in term of feedbacks ₽ 6E+4 systems tuning, background minimization and 4E+4 tuning of the machine luminosity 2E+41 Gamma mon e+ 6.03E+4 Crab OFF Time (sec) 2E+5 Transverse beam dimensions 1.5E+5 at the Synchrotron Light Crab ON 5E+4 **Monitor** 0E+01 Gamma mon e-74391 1.153E+5 Crientation Time (sec) sigmaX e⁻ sigmaY 1.13 0.21Roundness 3E+2 0.350 1.250 Million and Martin and have pring 1.200-0.300-0.193 rola My from 1.150 0.250 1.100 0.200 coupling % 1.050-0.150-1.086 34270 341707 3427 341706 5E+1 X Y Positron Bhabha monitor Orientation 1.864E+2 Time (sec) **e**⁺ sigmaX sigmaY 0.94 0.20 0 0.300-1.000-Roundness 0.800 0.250-0.215 Blow-up in beam sizes and decrease 0.600-0.200in Bhabha rates observed when crab 0.150-0.400 -1.381 34270 341704 34270 341704 sextupols for one ring OFF (other ring ON)

LUMINOMETERS


DAFNE latest results

Recent Achievements

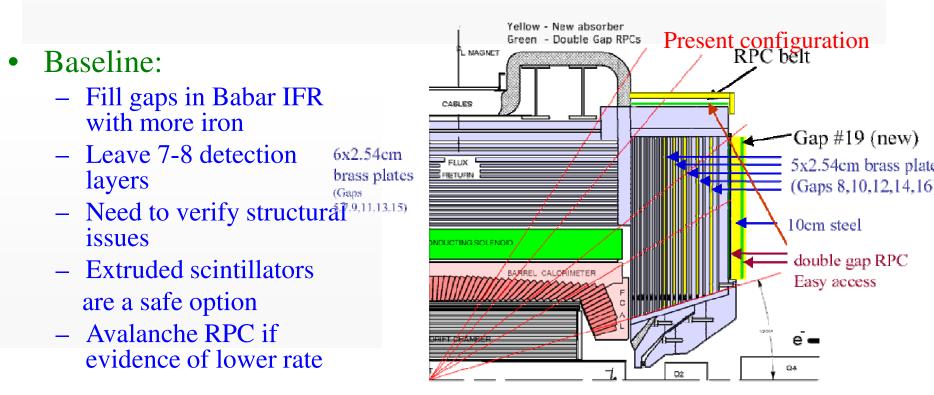

 $L_{peak} = 4.05 \ cm^{-2}s^{-1}$

SIDD	HART	A Lun	ninos	ity
	1431	1106		
4.	.05I	E+3	2	12fam

Dec. 5th 2008

 $L_{\int 1 hour} = .79 \ pb^{-1}$

DCH (Drift Chamber)


- Basic technology adequate.
- Cannot reuse BaBar DCH because of aging
- Baseline:
 - Same He- C_4H_{10} , same cell shape
 - Carbon fiber endplates instead of Al to reduce thickness
 - \rightarrow Need to do complete background estimate
- Possible Options/Issues
 - Miniaturization and relocation of readout electronics
 - Critical for backward calorimetric coverage
 - Conical endplate
 - Further optimization of cell size/gas

EMC (Electromagnetic Calorimeter)

- Barrel CsI(Tl) crystals
 - Still OK and can be reused (the most expensive detector in BaBar)
 - Baseline is to transport barrel as one device
- Forward Endcap EMC
 - BaBar crystal are damaged by radiation and need to be replaced
 - Occupancy at low angle makes CsI(Tl) too slow
 - Use LSO as baseline
 - + gives better performance
 - + leaves PID option open
- Backward EMC option
 - Because of material in front will have a degraded performance
 - Maybe just a VETO device for rare channels such as $B \rightarrow \tau v$.
 - Physics impact needs to be quantitatively further assessed
 - DIRC bars are necessarily in the middle
 - DCH electronics relocation is critical for the perfomance
 - A scintillating tile design provides adequate flexibility ~10K SiPM channels

IFR and steel

- BaBar configuration has too little iron for μ ID
 - $> 6.5 \lambda_{I}$ required; 4-5 available in barrel
- Fine segmentation overdid K_L efficiency optimization
 - Focus on m ID : fewer layers and more iron
 - → Is it possible to use the IFR in K_L veto mode ?

Trigger/DAQ/Electronics

- Detailed evaluation in progress
- Should prepare for a trigger rate of 50-100KHz
 Unless a hardware L1 Bhabha rejector is developed
- Some electronics could be reusable
 - Some front-end cards, power supplies
- The bulk of the electronics is obsolete and unmaintainable
 - Should be remade with state-of-the-art technology
- Clearly a major cost driver
 - Costing using recent experiments experience (LHC)

The break-through in the machine design is making our life a bit easier. Still important sources of background:

- Luminosity sources
 - beam-beam
 - radiative Bhabha
- Linear with currents
 lost particles and s.r.

	Cross section	Evt/bunch xing	Rate
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz
e ⁺ e⁻ pair production	~7.3 mbarn	~15	7GHz
Elastic Bhabha	O(10 ⁻⁵) mbarn (Det. acceptance)	~20/Million	10KHz
Ύ(4S)	O(10 ⁻⁶) mbarn	~2/million	I KHz

- Other sources of background
- Touschek background
- Thermal outgassing due to HOM losses;
 Not an issue with these currents
- Injection background

Working Group Report

On INFN Super Flavour Factory Project RECFA meeting, Athens, 11 October 2008

RECFA Internal Working Group Y. Karyotakis, F. Linde, T. Nakada^{*)} and B. Spaan, ^{*)} Chair

Physics III

- A step beyond the "LHCb" era for an e⁺e⁻ machine requires >50 time more statistics than now to be enough to establish any effects of beyond the Standard Model, which exhibit no sign now or in coming couple of years (in particular for "inclusive" ΔB=1 b→s and b→d process?).
- LFV, e.g. $\tau \rightarrow e\gamma$ would be a big hit. (interesting to see what $\mu \rightarrow e\gamma$ will say in coming years)
- The main goal of PEB-II and KEKB was a quantitative test of the KM mechanism of CP violation from the B_d→J/ψK_S decays.
 ⇒ CKM parameters were known enough to make a good prediction for the required luminosity.
- For a SuperB project, we do not have such a "success guaranteed" minimum luminosity, since we don't know the New Physics parameters.
 ⇒But this is the case for the most of the high energy frontier accelerators too.

INFN Super Flavour Factory I

Very high luminosity >10³⁶cm²s⁻¹ obtained by colliding tiny beams. (similar to a LC)
 ⇒needs small emittance (similar to a LC damping ring), large crossing angle and crab waist

ILC synergy

But works as a circular collider (Novel idea developed by INFN)

©© Its required current not higher than the present

machines (RF power 17 MW)

- affordable operation cost
- easier operation
- small background

- Test being done with DAFNE very successful, but still at low currents
- More simulation work needed to fully understand the result
- Machine parameters need some robustness.
- No real design for the complete system.
- ⇒ to be addressed by the TDR within 1 to 2 years in collaboration with the interested Asian, European and US laboratories.

- Flavour physics is an important part of the European particle physics programme. Rich physics programme.
 - An e⁺e⁻ collider at Y(4S) energy region would be a significant milestone if
 - much more than 50 ab^{-1} by the end of ~2020
 - moderate cost
 - INFN Project addresses these points by
 - Very high luminosity >10³⁶ with a unique machine concept
 - Reutilizing PEP-II rings and injector, and BaBar
 - Machine R&D should be strongly supported for the TDR to show that the concept can be indeed realised.
 (R&D is also useful for the future machines)
- For an approval, there should be
 - a clear plan containing realistic technical milestones
 - required resources and strategy how to obtain them

with a goal to achieve much more than 50 ab^{-1} data by ~2020 to make a meaningful impact. Much later than this, physics landscape could be drastically different.

Very ambitious plan and need to move fast.

Conclusions