Emilian Dudas

CPhT-Ecole Polytechnique

String Theory

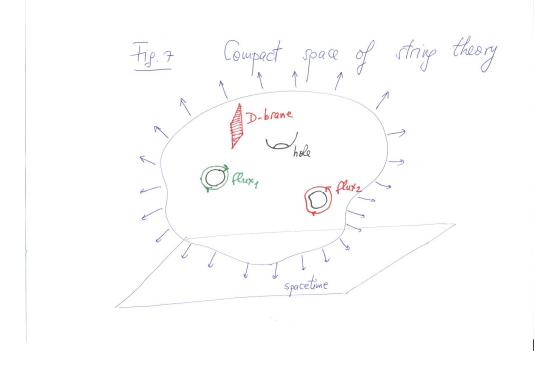
at

Low Energies

october 22, 2009, Bucuresti-Magurele

Outline

- Strings and D-branes
- TeV scale strings and Brane Universes


strong gravity versus string effects

- virtual graviton exchange
- contact interactions
- accelerated unification
- Intersecting branes
- some phenomenological properties
- Strings and their role in the LHC era

Complementary talks: B.Dobrescu, D.Ghilencea, A.Micu

1. Strings and D-branes

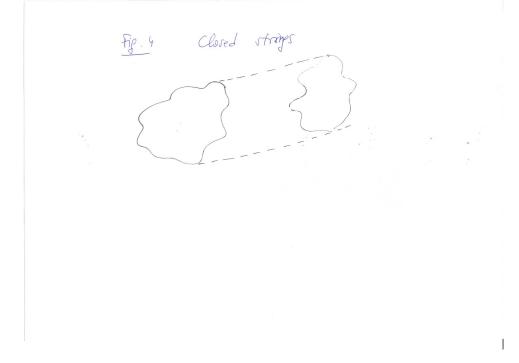
- Consistency conditions \rightarrow 10d \rightarrow six extra dimensions

Supersymmetry appears naturally → superstrings

- Superstrings are characterized by

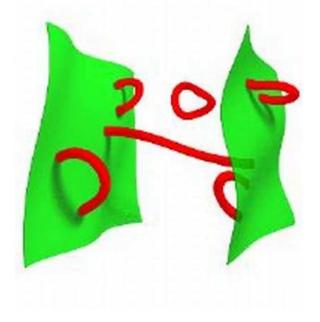
$$l_s$$
 (M_s) = length (mass) of the string

$$g_s = e^{\langle \phi \rangle}$$
 string coupling, $\phi = dilaton$


 M_s is an input parameter, whereas g_s is dynamically determined.

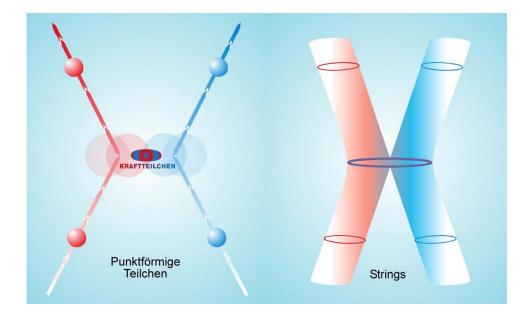
After compactification, there are a large number of moduli fields : dilaton, volume moduli, shape moduli. Most of them are massless

 \rightarrow need mechanisms of moduli stabilization (talk A. Micu).


There are two types of strings :

closed strings : excitations : gravitons , etc

They propagate everywhere (in the "bulk").


open strings excitations : electrons, etc

Their end points are :

- free to move : (Neumann boundary conditions)
- fixed : (Dirichlet boundary conditions)

Strings have no point-like interactions \rightarrow no UV divergences !

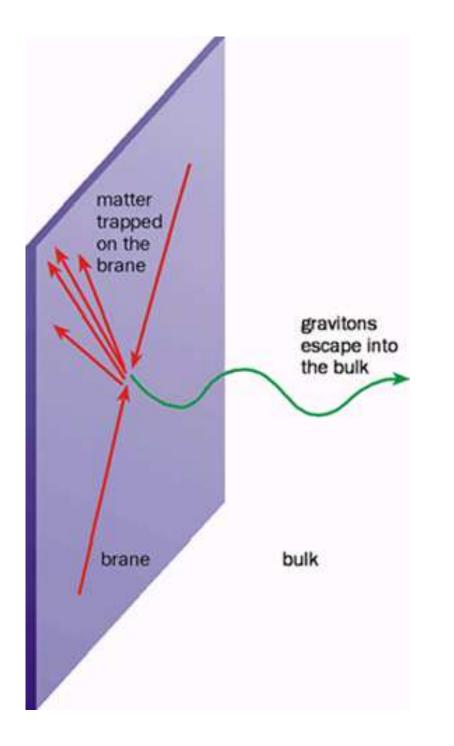
Strings have surfaces of p space-dims. : D-branes (Polchinski, 95), which contain gauge fields (coupling g) and matter fields.

- D-branes carry mass and charges. They source gravitational fields and curve the internal space.
- Bulk (gravity) fields interact with the brane fields.

$$T_{\text{brane}}^{\mu\nu} g_{\mu\nu}(\mathbf{y}=0,\mathbf{x}) = \frac{1}{\sqrt{V}} T_{\text{brane}}^{\mu\nu} \sum_{k} g_{\mu\nu}^{(k)}(\mathbf{x})$$

- Branes interact via the exchange of bulk fields.

Gauge groups for N coincident Dp-branes: U(N) (type II strings) or SO(N) (or USP(N)) for orientifolds.


2. Brane universes and TeV scale strings

: ADD scenario

(Arkani-Hamed, Dimopoulos, Dvali, 98)

If SM lives on D-branes (open strings), constraints on unification and fundamental scale weaken considerably.
ADD Brane Universe = the three SM gauge interactions and matter (open strings) are localized on a Dp (ex. D3) brane

The gravitation (closed strings) lives everywhere in ("in the bulk").

The relevant effective action is

$$\int d^4x \left(\int d^6y \frac{M_s^8}{g_s^2} \mathcal{R} - \int d^\delta y \frac{M_s^\delta}{g_s} F_{MN}^2 \right) \;,$$

where :

 δ = parallel dimensions = p-3 for a Dp brane, $V_{||}$. $n = 6 - \delta = 9 - p$ = perpendicular dimensions, V_{\perp} . $g_s = e^{\Phi}$ = string coupling , M_s = string scale. We get the relations

$$M_P^2 = \frac{1}{g_s} V_{\perp} M_s^{2+n} = V_{\perp} M_*^{2+n}$$
$$g_4^2 = g_s V_{\parallel} M_s^{6-n}$$

If $M_s \sim TeV$, the hierarchy problem is solved.

The n perpendicular extra dimensions can be of macroscopic size

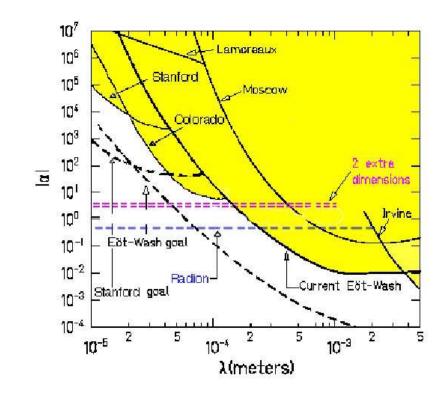
$$R_{\perp} \leq 10^{-1} mm ,$$

constraint coming from eventual deviations from Newton's law .

- If SUSY breaking on the branes, scale $M_{SUSY} \sim M_s$

$$m_{
m bulk-moduli} \sim rac{M_{SUSY}^2}{M_P} \sim 10^{-3} eV$$

 \rightarrow also possible modifications of Newton law.


Newtonian potential between two bodies of masses m_1 , m_2 is

$$V(r) = -\frac{1}{M_P^2} \frac{m_1 m_2}{r} , \quad \text{for } r > R ,$$

$$V(r) = -\frac{1}{M_*^2 + n} \frac{m_1 m_2}{r^{1+n}} , \quad \text{for } r < R .$$

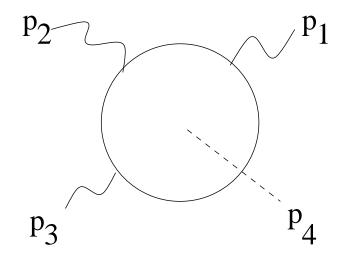
Two dims. of extreme size $R_{\perp} \sim 10^{-1} \ mm$ give a fundamental string mass scale

 $M_s \sim 3 - 10$ TeV

 → strings could be accessible at LHC !
 Hierarchy problem translated into the problem of finding a very large transverse volume.

Searches for deviations from Newton law, with

$$V(r) = G_N \frac{m_1 m_2}{r} (1 + \alpha \ e^{-r/\lambda})$$


Gravity becomes strong at energies

$$M_* = (\frac{1}{g_s})^{1/(2+n)} M_s > M_s$$

 \rightarrow string effects are observable in future colliders (ex. LHC in 2009), if TeV strong gravity.

Graviton emission in the bulk

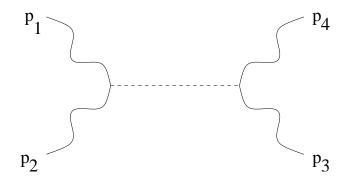
three open and one closed string particles (ex: $q\bar{q} \rightarrow \gamma G$)

The inclusive cross-section

$$\sigma_{FT} \sim \frac{1}{M_P^2} \sum_{m_i=0}^{RE} \sim \frac{E^n}{M_*^{2+n}}$$

is reliable at the field-theory level.

However, string effects appear at $M_s < M_*$. By an explicit computation we find (m = graviton mass)


$$A_{4} = \frac{2^{-\frac{m^{2}}{M_{s}^{2}}}\Gamma(-\frac{m^{2}}{2M_{s}^{2}} + \frac{1}{2})\Gamma(1 - \frac{s}{2M_{s}^{2}})\Gamma(1 - \frac{t}{2M_{s}^{2}})\Gamma(1 - \frac{u}{2M_{s}^{2}})}{\sqrt{\pi}}\Gamma(1 + \frac{s - m^{2}}{2M_{s}^{2}})\Gamma(1 + \frac{t - m^{2}}{2M_{s}^{2}})\Gamma(1 + \frac{u - m^{2}}{2M_{s}^{2}})}A_{4}^{FT}$$

which at low energy can be expanded

$$\frac{\sigma - \sigma_{FT}}{\sigma_{FT}} \sim \frac{E^4}{M_s^4}$$

Virtual graviton exchange

Another important process for the large Xtra dim. scenario: virtual graviton exchange

For $n \ge 2$ perpendicular dimensions, summation over virtual gravitons is UV divergent

$$A \sim \frac{1}{M_P^2} \sum \frac{1}{s - (m_1^2 + \dots + m_n^2)/R_{\perp}^2} \sim \frac{1}{M_P^2} R_{\perp}^2 (R_{\perp} \wedge)^{n-2}$$

The result is

$$A \sim \frac{\Lambda^{n-2}}{M_*^{2+n}} \sim \frac{c^{n-2}}{M_*^4}$$

Main corrections to the four-point function is not graviton exchange, but the tree-level exchange of string oscillators (Veneziano amplitude).

$$A(1,2,3,4) \sim g^2 \frac{\Gamma(1-\frac{s}{M_s^2})\Gamma(1-\frac{t}{M_s^2})}{\Gamma(1-\frac{s+t}{M_s^2})}K(1,2,3,4)$$

Contact interactions

Massive string exchanges \rightarrow contact interactions. Ex :

 $gg \to gg$, $gg \to q\bar{q}$, $gq \to q\bar{q}$, $gq \to gq$ $V(1,2,3,4) \sim \frac{\Gamma(1-\frac{s}{M_s^2})\Gamma(1-\frac{u}{M_s^2})}{\Gamma(1+\frac{t}{M_s^2})} = \frac{su}{tM_s^2}B(-s/M_s^2, -u/M_s^2)$

leading to effective operators of the type

$$\mathcal{L}_{\mathrm{eff}} \sim rac{1}{M_s^4} tr F^4 \quad , \quad rac{1}{M_s^4} tr (F^2 \ ar{q} \partial q) \ , \mathrm{etc}$$

These amplitudes are independent of the compactification details and have big luminosities at LHC. They contain the massive Regge resonances, ex:

$$B(-s/M_s^2, -u/M_s^2) = -\sum_{n=0}^{\infty} \frac{M_s^{2-2n}}{n!} \frac{1}{s - nM_s^2} \prod_{J=1}^n (u + JM_s^2)$$

Four-fermion (quark) processes are more model (compactification) dependent. There are also processes with no SM background.

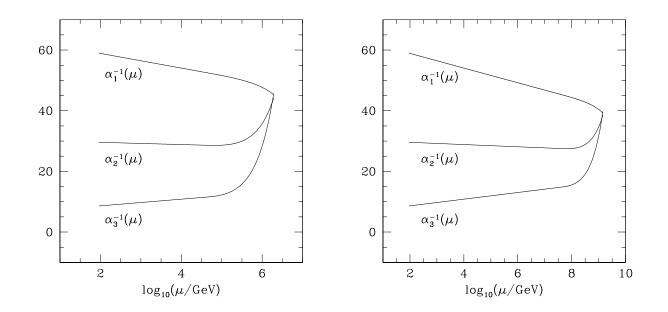
Ex: $qg \to q\gamma$, $gg \to g\gamma$. Corresponding amplitudes are $|M(qg \to q\gamma)|^2 \sim \frac{g^4}{M_s^2} \left[\frac{M_s^4 u}{(s - M_s)^2} + \frac{u^3}{(s - M_s)^2} \right]$, $|M(gg \to g\gamma)|^2 \sim \frac{g^4}{M_s^4} \left[\frac{M_s^8}{(s - M_s)^2} + \frac{u^4 + t^4}{(s - M_s)^2} \right]$. Analogously, for KK states :

$$\sum_{\mathbf{k}} \frac{1}{M^2 + \mathbf{k}^2/R^2} \left(\bar{\Psi} \gamma^m \Psi \right) \left(\bar{\Psi} \gamma^m \Psi \right)$$

Constraints from contact interactions give constraints of the order

$$M_s$$
, $R^{-1} \geq 2-3 TeV$

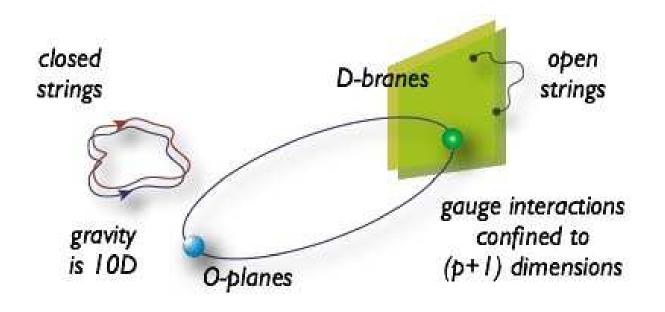
• The constraints for UED are much weaker (B. Bobrescu talk).


Accelerated Unification

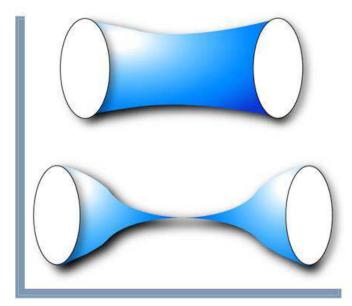
• Gauge coupling unification seems to predict a very high unification scale M_s , inaccessible to colliders. Is there's a way to get unification at low energies ?

- Yes. The elementary particles: electron, quarks, etc propagate in TeV size extra dimensions . Their Kaluza-Klein states produce an accelerated evolution of the couplings.

 \rightarrow accelerated unification .


TeV extra dims. interesting for collider (UED + dark matter, B.Dobrescu talk)

Unification of gauge couplings in the presence of extra spacetime dimensions. We consider two representative cases: $R^{-1} = 10^5$ GeV (left), $R^{-1} = 10^8$ GeV (right). In both cases we have taken $\delta = 1$ and $\eta = 0$.


3. Intersecting brane worlds

(Blumenhagen,Kors, Lust; Angelantonj,Antoniadis,E.D.,Sagnotti) Cartoon picture of type II orientifolds : open/closed strings, Dp-branes/O-planes \rightarrow

D-brane/O-planes have tension and charges (T_p, q_p) . Crucial constraint: RR tadpole constraints \leftrightarrow UV finiteness \leftrightarrow Gauss law in internal space

$$\sum_{Dp} q_{Dp}^{(n)} + \sum_{Op} q_{Op}^{(n)} = 0 \quad ; \quad SUSY \to T_p = q_p$$

Simple way of partially or totally breaking SUSY is by rotating the branes in the compact space.

Type IIA orientifolds : there are three angles $\theta_1, \theta_2, \theta_3$ that D6 brane(s) can make with the horizontal axis x_4, x_6, x_8 of the three torii of the compact space. For two distinct stacks of D-branes/O-planes $D^{(1)}$ and $D^{(2)}$, relevant quantities are the relative angles

$$\theta_i^{(12)} = \theta_i^{(1)} - \theta_i^{(2)}$$

Compact space : two important additional ingredients:
rotations of branes in the compact space are quantized, according to

$$\tan \theta_i^{(a)} = \frac{m_i^{(a)} R_{i2}}{n_i^{(a)} R_{i1}} ,$$

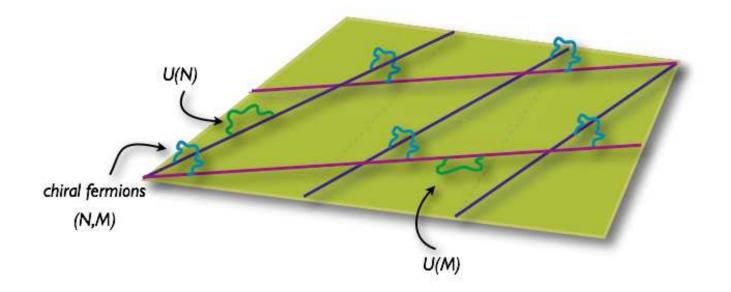
where $(m_i^{(a)}, n_i^{(a)})$ are the wrapping numbers of the brane(s) $D^{(a)}$ along the two compact directions of the compact torus T_i^2 .

The total internal volume of the brane $D^{(a)}$ is then

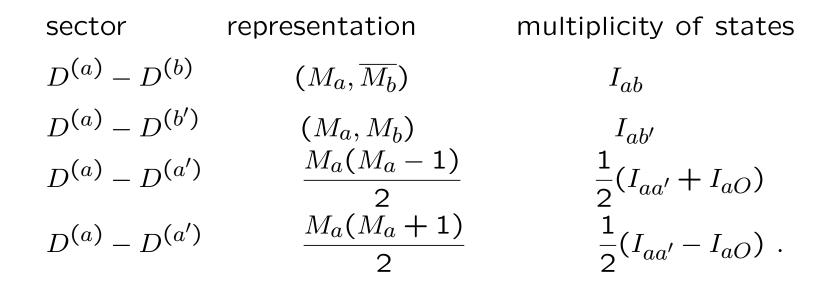
$$V^{(a)} = (2\pi)^3 \prod_{i=1}^3 \sqrt{m_i^{(a),2} R_{i2}^2 + n_i^{(a),2} R_{i1}^2} .$$

For two stacks of branes $D^{(a)}$ and $D^{(b)}$, the number of times they intersect in the compact torus T_i^2 is given by the *intersection number*

$$I_i^{(ab)} = m_i^{(a)} n_i^{(b)} - n_i^{(a)} m_i^{(b)}$$

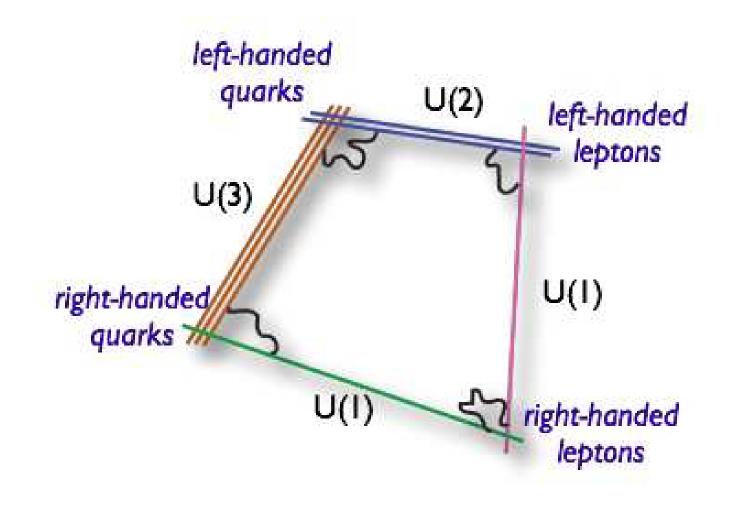

Branes at angles generate 4d chirality. Example: type IIA string with two sets of M_a coincident $D^{(a)}$ and M_b coincident $D^{(b)}$ intersecting branes in toroidal compact-ification :

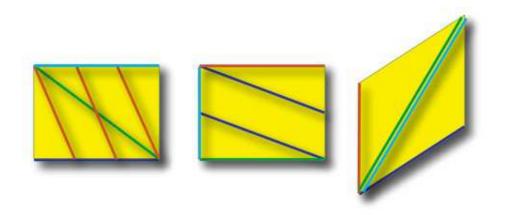
- the gauge group is $U(M_a) \otimes U(M_b)$.


- strings stretched between the two D-branes have chiral fermions (M_a, \bar{M}_b)

Multiplicity equal to the total number of times the branes intersect in the compact space

$$D^{(a)} - D^{(b)} : I^{(ab)} = \prod_{i=1}^{3} I_i^{(ab)} = \prod_{i=1}^{3} \left(m_i^{(a)} n_i^{(b)} - n_i^{(a)} m_i^{(b)} \right).$$

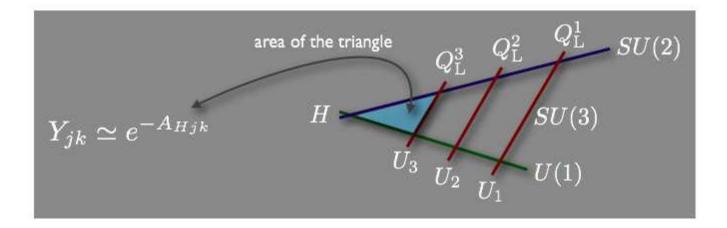

The chiral spectrum for toroidal compactification contains chiral fermions in


Some phenomenology of intersecting branes models

Standard Model like spectra (Madrid group; Munich group)

Quasi-realistic models with intersecting were constructed in the last couple of years. The generic Standard Model type construction contains four (or more) stacks, containing D-branes with a minimal gauge group $U(3) \times$ $U(2) \times U(1)^2 = SU(3) \times SU(2) \times U(1)^4$. "Standard Model" quiver

Intersection pattern


U(3)	(1,0)	(2,-1)	(1,0)
		(1,0)	
U(I)	(1,-3)	(1,0)	(0,1)
U(I)	(1,0)	(0,1)	

Yukawa couplings

Number of Generation = number of intersections between branes.

Then Yukawa couplings have a nice geometrical intepretation of mass hierarchies

(Cremades, Ibanez, Marchesano)

• Three abelian gauge factors X_a are anomalous (massive) by Stueckelberg mixing with axions. The fourth is massless: the hypercharge Y. Anomaly cancelation à la Green-Schwarz (gauge transf. of axions):

$$Tr X_a G_a^2 \neq 0$$
 , $Tr X_a X_b^2 \neq 0$

(Some) problems:

- SUSY realistic models (MSSM) difficult to realize.
- Gauge coupling unification is not automatic.
- For SU(5) GUT's, top coupling 10 10 5_H perturbatively forbidden.

Strings : and their role in the LHC era ?

The LHC (Large Hadron Collider) era starts, with energies (2009) of 10 TeV, in searching for physics Beyond the Standard Model.

- "Stringy" Discoveries :
- Discovery low-energy SUSY :

→ if SUSY breaking transmission is gravitational (not easy to test) → Supergravity → Superstrings
 → try to discover signatures of moduli fields :
 Anomaly cancelation a la Green-Schwarz, deviations
 from Newton law in table-top experiments.

• Flat (large) extra spacetime dimensions \leftrightarrow string theory at a low scale $M_s \rightarrow$ spectacular effects of strings : Regge states, KK production, contact operators, strong gravity at TeV ...

• Warped (small, Randall-Sundrum like) dimensions: spin two TeV mass KK gravitons, radion.

- "Non-stringy" discoveries :

• Z' gauge bosons, fourth generation, little Higgs models...

 \rightarrow String theory probably not very relevant

- No discovery :

- perturbative consistency (unitarity) of the SM broken around 1 TeV
- \rightarrow new nonperturbative physics (ex. technicolor) \rightarrow holographic studies based on AdS/CFT $\,$?