Planar $\mathcal{N}=4$ gauge theory and integrability

D. Serban,
IPhT Saclay

Summary

- what is the $\mathcal{N}=4$ gauge theory?
- why $\mathcal{N}=4$ gauge theory?
- gauge/string correspondence
- Maldacena's conjecture (AdS/CFT)
- integrability and the exact solution of AdS/CFT
- conclusion

What is the $\mathcal{N}=4$ planar gauge theory?

$\mathcal{N}=4$ gauge theory (in 4D) is a supersymmetric version of QCD

Field content

$$
A_{\mu}, \Phi_{I}(I=1, \ldots, 6), \Psi_{\alpha}(\alpha=1, \ldots, 4) \text { and derivatives }
$$ $\mathrm{SU}(N)$ matrices:

$$
\begin{array}{r}
S=\int d^{4} x\left(\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \operatorname{Tr} \mathcal{D}_{\mu} \Phi_{i} \mathcal{D}^{\mu} \Phi^{i}-\frac{g_{\mathrm{YM}}^{2}}{4} \operatorname{Tr}\left[\Phi_{i}, \Phi_{j}\right]\left[\Phi^{i}, \Phi^{j}\right]+\right. \\
\left.\operatorname{Tr} \bar{\psi}^{a} \sigma^{\mu} \mathcal{D}_{\mu} \psi_{a}-\frac{i g_{\mathrm{YM}}}{2} \operatorname{Tr} \sigma_{i}^{a b} \psi_{a}\left[\Phi^{i}, \psi_{b}\right]-\frac{i g_{\mathrm{YM}}}{2} \operatorname{Tr} \sigma_{a b}^{i} \bar{\psi}^{a}\left[\Phi_{i}, \bar{\psi}^{b}\right]\right)
\end{array}
$$

it can be obtained by dimensional reduction from $D=10 \mathcal{N}=1$ SYM

$$
S=\int d^{10} x\left(\frac{1}{4} \operatorname{Tr} F_{M N} F^{M N}+\frac{1}{2} \operatorname{Tr} \psi \Gamma^{M} \mathcal{D}_{M} \psi\right)
$$

planar ('t Hooft) limit: $\quad N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed

Symmetries

- the beta function is zero, presumably at all orders \longrightarrow the Poincaré group gets promoted to the conformal group $\mathrm{SO}(4,2) \cong \mathrm{SU}(2,2)$

the coupling constant is not running!

- there are four copies of supersymmetry generators, which are rotated into one another by the R-symmetry $\mathrm{SO}(6) \cong \mathrm{SU}(4)$
- the total symmetry super-group is $\operatorname{PSU}(2,2 \mid 4)$

$$
\left(\begin{array}{cc}
L, \bar{L}, P, K, D & Q, \bar{S} \\
\bar{Q}, S & R
\end{array}\right)
$$

Why the $\mathcal{N}=4$ planar gauge theory?

"more is less": it is simpler than QCD and may be exactly solvable due to the high amount of symmetry
first example of precise duality with a string theory (type IIB on $\mathrm{AdS}_{5} \mathbf{x S}^{\mathbf{5}}$)
[Maldacena 97; Witten 98; Gubser, Klebanov, Polyakov 98]
although not realized in nature, it can help our understanding of strongly coupled gauge theories

String/gauge duality

Feynman graphs for large \boldsymbol{N} gauge theories \sim string expansion ['t Hooft] propagators: vertices:

loops: factor of N from $\operatorname{Tr} 1$
diagram with E edges, V vertices and F loops:

$$
\begin{gathered}
N^{F}\left(g_{\mathrm{YM}}^{2}\right)^{E-V}=N^{V-E+F}\left(g_{\mathrm{YM}}^{2} N\right)^{E-V} \\
\text { genus: } \chi=V-E+F=2-2 g \\
\mathcal{F}=N^{2}+\frac{1}{N^{2}}+1+\ldots=\sum_{g=0}^{\infty} \frac{1}{N^{2 g-2}} \sum_{l=0}^{\infty} c_{g, l} \lambda^{l} \\
\text { string expansion: } \quad \boldsymbol{g}_{\boldsymbol{S}} \sim \mathbf{1} / \mathbf{N}^{2}
\end{gathered}
$$

low-dimensional example: duality between matrix models and non-critical string theories and 2d quantum gravity [Kazakov, Migdal, Kostov,...]

AdS/CFT correspondence

Correspondence between string theory on an AdS space and a conformal field theory on the boundary of AdS [Maldacena 97]

- context: string theory in presence of D-branes [Polchinski; Witten; Klebanov; Horowitz, Strominger,...]
- rejoins early ideas about gauge/string correspondence [Wilson; Polyakov; ‘t Hooft]

First example: $\mathcal{N}=4$ gauge theory in 4 D is dual to type IIB string theory on AdS_{5} x S^{5} [Maldacena 97; Witten 98; Gubser, Klebanov, Polyakov 98]

$$
S^{5:}
$$

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots+x_{6}^{2}=1
$$

$$
\operatorname{AdS}_{5:} \quad-y_{-1}^{2}-y_{0}^{2}+y_{1}^{2}+y_{2}^{2}+\ldots y_{4}^{2}=-1
$$

More recently: $\mathcal{N}=6$ Chern-Simons theory in 3D is dual to type IIB string theory on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$ [Aharony, Bergman, Jafferis, Maldacena, 08]

Dictionary of the correspondence

't Hooft coupling	$g^{2}=\frac{g_{\mathrm{YM}}^{2} N}{16 \pi^{2}}$	string tension	$T=2 g$
number of colors N	string coupling	$g_{\mathrm{S}}=\frac{g}{N}$	
planar limit	free strings		
local operators $\operatorname{Tr}\left(\Phi_{I_{1}} \Phi_{I_{2}} \ldots \Phi_{I_{L}}\right)$	string states		
scaling dimension	$E(g)$	energy of the string	
R-charges	J_{a}	angular momenta	

the same global symmetry $\operatorname{PSU}(2,2 \mid 4)$
$E(g), S_{1}, S_{2}, J_{1}, J_{2}, J_{3}$

Integrability

One loop dilatation operator

$$
=
$$

integrable spin chain
[Minahan, Zarembo, 02]

$$
\begin{aligned}
& Z=\Phi_{1}+i \Phi_{2} \\
& W=\Phi_{3}+i \Phi_{4}
\end{aligned}
$$

$\operatorname{tr} Z Z Z W W Z Z Z W W W Z W Z Z Z Z \ldots$

$$
\begin{gathered}
\hat{D}_{1}=2 \sum_{l=1}^{L}\left(1-P_{l, l+1}\right) \\
\| X X
\end{gathered}
$$

solution in terms of Bethe Ansatz equations

String sigma model is

classically integrable
[Bena, Polchinski, Roiban, 02]
$I=-\frac{\sqrt{\lambda}}{4 \pi} \int d \tau d \sigma\left[G_{m n}^{\left(A d S_{5}\right)} \partial_{a} X^{m} \partial^{a} X^{n}+G_{m n}^{\left(S^{5}\right)} \partial_{a} Y^{m} \partial^{a} Y^{n}\right]$

+ fermions
string solution, e.g.

[Kazakov, Marshakov, Minahan, Zarembo, 04]
solution of the classical sigma model
in terms of an algebraic curve

Integrability in AdS/CFT

extends to the whole $\operatorname{PSL}(2,2 \mid 4)$ group
[Beisert, Staudacher 03]
survives at higher loops
[Beisert, Kristjansen, Staudacher 03] [Beisert 03-04]

$$
\downarrow \text { [conjecture] }
$$

There exists a model which is integrable for any value of the coupling constant g
spin chain at $g \rightarrow 0$
perturbative $\mathcal{N}=4$ SYM

sigma model at $g \rightarrow \infty$
perturbative string theory on $\mathrm{AdS}_{5} \times \mathrm{X}^{5}$

Integrability

existence of an infinite number of integrals of motion $\left[\mathrm{I}_{\mathrm{m}}, \mathrm{I}_{\mathrm{n}}\right]=0$

Yang-Baxter equation

$$
\mathbf{S}_{12} \mathbf{S}_{13} S_{23}=\mathbf{S}_{23} S_{13} S_{12}
$$

The all-loop Bethe Ansatz equations

psu(2,2|4)

$$
\begin{aligned}
1 & =\prod_{j=1}^{K_{2}} \frac{u_{1, k}-u_{2, j}+\frac{i}{2}}{u_{1, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{1-1 / x_{1, k} x_{4, j}^{+}}{1-1 / x_{1, k} x_{4, j}^{-}} \\
1 & =\prod_{j \neq k}^{K_{2}} \frac{u_{2, k}-u_{2, j}-i}{u_{2, k}-u_{2, j}+i} \prod_{j=1}^{K_{3}} \frac{u_{2, k}-u_{3, j}+\frac{i}{2}}{u_{2, k}-u_{3, j}-\frac{i}{2}} \prod_{j=1}^{K_{1}} \frac{u_{2, k}-u_{1, j}+\frac{i}{2}}{u_{2, k}-u_{1, j}-\frac{i}{2}}, \\
1 & =\prod_{j=1}^{K_{2}} \frac{u_{3, k}-u_{2, j}+\frac{i}{2}}{u_{3, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{x_{3, k}-x_{4, j}^{+}}{x_{3, k}-x_{4, j}^{-}}
\end{aligned}
$$

[Beisert, Staudacher, 05]
[Beisert, 05]
[Arutynov, Frolov, Zamaklar, 06]

$$
\left(\frac{x_{4, k}^{+}}{x_{4, k}^{-}}\right)^{L}=\prod_{j \neq k}^{K_{4}} \frac{u_{4, k}-u_{4, j}+i}{u_{4, k}-u_{4, j}-i} \sigma^{2}\left(x_{4, k}, x_{4, j}\right)
$$

$$
\times \prod_{j=1}^{K_{1}} \frac{1-1 / x_{4, k}^{-} x_{1, j}}{1-1 / x_{4, k}^{+} x_{1, j}} \prod_{j=1}^{K_{3}} \frac{x_{4, k}^{-}-x_{3, j}}{x_{4, k}^{+}-x_{3, j}} \prod_{j=1}^{K_{5}} \frac{x_{4, k}^{-}-x_{5, j}}{x_{4, k}^{+}-x_{5, j}} \prod_{j=1}^{K_{7}} \frac{1-1 / x_{4, k}^{-} x_{7, j}}{1-1 / x_{4, k}^{+} x_{7, j}}
$$

$$
1=\prod_{j=1}^{K_{6}} \frac{u_{5, k}-u_{6, j}+\frac{i}{2}}{u_{5, k}-u_{6, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{x_{5, k}-x_{4, j}^{+}}{x_{5, k}-x_{4, j}^{-}}
$$

$$
1=\prod_{j \neq k}^{K_{6}} \frac{u_{6, k}-u_{6, j}-i}{u_{6, k}-u_{6, j}+i} \prod_{j=1}^{K_{5}} \frac{u_{6, k}-u_{5, j}+\frac{i}{2}}{u_{6, k}-u_{5, j}-\frac{i}{2}} \prod_{j=1}^{K_{7}} \frac{u_{6, k}-u_{7, j}+\frac{i}{2}}{u_{6, k}-u_{7, j}-\frac{i}{2}}
$$

$$
1=\prod_{j=1}^{K_{6}} \frac{u_{7, k}-u_{6, j}+\frac{i}{2}}{u_{7, k}-u_{6, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{1-1 / x_{7, k} x_{4, j}^{+}}{1-1 / x_{7, k} x_{4, j}^{-}}
$$

Dressing factor

[Janik'06;
Beisert-Hernandez-Lopez'06;
Beisert-Eden-Staudacher'06]

$$
x+\frac{1}{x}=\frac{u}{g}
$$

$$
x^{ \pm}+\frac{1}{x^{ \pm}}=\frac{1}{g}\left(u \pm \frac{i}{2}\right)
$$

the form of these equations is almost entirely dictated by symmetry

Connection(s) with the Hubbard model

2 seemingly unrelated connections with the 1d Hubbard model

- $\mathrm{su}(2)$ sector reproducible from the Hubbard model at half filling (except for the dressing phase) [Rej, Serban, Staudacher, 06]

$$
\begin{gathered}
e^{i p_{k} L}=\prod_{\substack{j=1 \\
j \neq k}}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad u(p)=\frac{1}{2} \cot \frac{p}{2} \sqrt{1+16 g^{2} \sin ^{2} \frac{p}{2}}, \\
E(p)=\sqrt{1+16 g^{2} \sin ^{2} \frac{p}{2}}-1
\end{gathered}
$$

[Beisert, Dippel, Staudacher, 04]

- Beisert's su(2|2) symmetric S-matrix \sim Hubbard Shastry's R-matrix \Rightarrow hidden supersymmetry in the Hubbard model [Beisert, 06]

$$
H=\frac{1}{2 g} \sum_{i=1}^{L} \sum_{\sigma=\uparrow, \downarrow}\left(e^{i \phi_{\sigma}} c_{i, \sigma}^{\dagger} c_{i+1, \sigma}+e^{-i \phi_{\sigma}} c_{i+1, \sigma}^{\dagger} c_{i, \sigma}\right)-\frac{1}{2 g^{2}} \sum_{i=1}^{L} c_{i, \uparrow}^{\dagger} c_{i, \uparrow} \uparrow_{i, \downarrow}^{\dagger} c_{i, \downarrow}
$$

Checks: the anomalous dimension of the L-twist operator

$$
\text { twist } L \text { operators: } \quad \operatorname{Tr} D^{k_{1}} Z \ldots D^{k_{L}} Z \quad D=D_{0}+i D_{1}
$$

described by a sl(2) spin chain

$$
k_{1}+\ldots k_{L}=M \quad M \text { is Lorentz spin }
$$

[Korchemsky, 89]

$$
\Delta=M+f(g, L) \ln M+\ldots
$$

when $\mathrm{M} \rightarrow \infty$, BA equations become integral equations

$$
\boldsymbol{L} \text { finite: } \quad f(g, L)=f(g) \quad \text { universal (does not depend on } L \text {) }
$$

The universal scaling function

the most advanced test of the AdS/CFT correspondence via integrability:
perturbatively in gauge theory:

$$
f(g)=8 g^{2}-\frac{8}{3} \pi^{2} g^{4}+\frac{88}{45} \pi^{4} g^{6}-16\left(\frac{73}{630} \pi^{6}+4 \zeta(3)^{2}\right) g^{8} \pm \ldots
$$

[Moch, Vermaseren, Vogt, 04]
[Bern et al, 06]
[Lipatov et al., 04]
[Cachazo et al, 06]
perturbatively in string theory at strong coupling:
both expansions can be reproduced from BES equation:
$f(g)=4 g-\frac{3 \log 2}{\pi}-\frac{\mathrm{K}}{4 \pi^{2}} \frac{1}{g}+\ldots$

[Gubser, Klebanov, [Frolov, Tseytlin, 02] [Roiban, Tseytlin, 07] Polyakov, 98]

[Klebanov et al, 06] [Kotikov, Lipatov, 06] [Alday et al. 07] [Kostov, D.S., Volin, 07]

[Casteill, Kristjansen, 07] [Belitsky, 07]

[Basso, Korchemsky, Kotanski, 07]
[Kostov, D.S., Volin, 08]
weak coupling: [Beisert, Eden, Staudacher, 06] non-perturbative corrections at strong coupling

Finite size corrections: the TBA program

Use the field-theoretical methods to compute finite-size corrections:
[Ambjorn, Janik, Kristjansen 05]

- Lüscher terms [Janik, Lukowski 07,...]
- put the theory on the cylinder and make a "double Wick rotation" $\mathbf{1 / T} \rightarrow \mathbf{R}$ [Arutynov, Frolov 07; Bajnok, Janik,08]
- difficulty: the rotated theory is not equivalent to the original one ("mirror theory")

simplest wrapping correction: the four loop $\mathrm{L}=4$ (Konishi operator)
[Fiamberti, Santambrogio, Sieg, Zanon ,08]: perturbative computation in N=4 SYM =
[Bajnok, Janik,08]: from the Thermodynamic Bethe Ansatz
- incorporate finite size effects into the Bethe Ansatz via the Hirota equation:
[Gromov, Kazakov, Vieira, 08-09]

The origin of integrability?

There is more in $\mathcal{N}=4 \mathrm{SYM}$ than the dilatation operator...

- the multigluon amplitudes have a particular structure at higher loops - > BDS conjecture [Bern, Dixon, Smirnov 05] (fails for $\mathrm{n}>5$)
- this structure was checked at strong coupling for 4 (and many) gluons [Alday, Maldacena 07]
- dual superconformal symmetry [Drummond, Henn, Korchemsky, Sokatchev, 07-08]
(and duality between multigluon amplitudes and the Wilson loops with lightlike cusps)
[the structure of the $\mathcal{N}=4 \mathrm{SYM}$ amplitudes is a whole subject in itself]
[Witten, Cachazo, Britto, Feng, Spradlin, Volovich, Arkani-Hamed, ... 03-09]
Connection between this structure and integrability? [Berkovits, Maldacena, 08]
[Beisert, Ricci, Tseytlin, Wolf, 08]
[Drummond, Henn, Plefka, 09],...

Integrable open spin chain for gluon amplitudes [Lipatov, 08]

Conclusion

- the AdS/CFT correspondence can be explored in detail using integrability
- integrability constitutes an extremely powerful non-perturbative tool
- the duality implies a non-trivial "change of variables" but it is not yet clear if there are some "more fundamental" variables
- $1 / \mathrm{N}$ corrections may also be accessible with the integrability tools
- less supersymmetric, finite N ?

