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Introduction

The Standard Model of Particle Physics → gauge group SU(3)× SU(2)× U(1)
– works well at energies of order 100 GeV (includes Higgs boson)

It is just an effective theory – need “Beyond SM” at higher energies.

Possibilities: Supersymmetry → Minimal Supersymmetric Standard Model
(MSSM)

GUT/susy GUT

Supersymmetry = fermionic symmetry: boson ↔ fermion

(Super)Multiplets → combinations of fields with different spin

Matter → chiral supermultiplets Φ = (φ, ψ)

Lagrangean for these fields is given by three functions
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• Kähler potentialK(Φ, Φ̄)

• superpotential W (Φ)

• gauge coupling function fab(Φ)

L ∼ −gi̄∂µφi∂µφ̄̄ − 1
4ImfabF

a
µνF

b µν + i
4RefabF

a
µνF̃

b µν − V ,

gi̄ = ∂Φi∂Φ̄̄K(Φ, Φ̄) ,

V = eK
(
DiWDjWgi̄ − 3|W |2

)
+ 1

2Imf
−1
ab D

aDb

DiW = ∂ΦiW + (∂ΦiK)W .

Supersymmetric solutions: DiW = 0.
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String theory

Replaces point particles by 1d extended objects – strings.

Supposed to be valid at energies of order MPl = 1019GeV .

Contains gravity – good candidate for a theory of quantum gravity.

In the low energy limit → supergravity in 10 space-time dimensions

Compactifications on 6-dimensional manifolds → supergravity in 4d: K, W and
f can be computed in string theory

There exist 5 consistent superstring theories: type IIA/B, type I, heterotic
SO(32)/E8 × E8.
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4d requirements

N=1 supersymmetry

Standard Model/GUT

• gauge grup G ⊃ SU(3)× SU(2)× U(1)

• chiral matter

Type II → need additional constructions: intersecting branes, singularities etc.

SO(32) – does not have the right representations for matter fields in 4d

E8 → works pretty well

5



Compactification

Simple example 5d → 4d on S1

5d scalar field φ → 4d scalar field

5d vector field→
{
Aµ − 4d vector field
A5 − 4d scalar

5d metric→

 gµν − 4d metric
gµ5 − 4d vector field (U(1) gauge field)
g55 − 4d scalar
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Structure of the 4d theory depends on the internal (6d) manifold.

N = 1 susy in 4d requires a globally defined (covariantly constant) spinor in 6d

Need SU(3) holonomy ⇒ Calabi–Yau manifolds (complex, Kähler, Ricci-flat
manifolds)

4 = 1⊕ 3

Solve Einstein equations for 4d Minkowski space

Heterotic E8 string → relistic 4d models e.g. gauge group E6 and chiral matter
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Problems: moduli

Deformations of the internal geometry which preserve the background

δgmn such that δRmn(δg) = 0.

Kähler class deformations δgab̄

Complex structure deformations δgab.

All couplings and masses in 4d depend on the vev’s of he moduli.

Large vacuum degeneracy

Need to fix moduli!
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Turning on fluxes

10d tensor fields of various degree – usually set to zero in KK compactifications

Flux = vev for the field strengths of these fields∫
γp

Fp = n

Generate suerpotentials for the moduli

W =
∫
CY

∑
p−even

Fp ∧ eJ + F3 ∧ Ω

J - two form, Ω- three form specific to CY manifolds – depend on moduli.

9



Moduli stabilsation

Not all moduli enter the flux superpotential

Need generalisations to manifolds with SU(3) structure – geometric fluxes

Very few cases where all moduli appear in W

Almost always need to rely on non-perturbative effects (gaugino condensation,
world-sheet or brane instantons)

W = Wflux + e−S

Fluxes are quantised → Wflux ∼ O(1)

Usually S � 1 → e−S � 1
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