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Măgurele, Bucharest, 22-23 October 2009



Outline

1 Conditions for a conserved quantity
2 Role of Killing-Yano tensors
3 Examples
4 Outlook
5 References

Visinescu Higher order first integrals 2/21



Conditions for a conserved quantity (1)

Let (M, g) a N-dimensional manifold with the metric tensor g.
Classical dynamics of a point charge q of mass M in the
external Abelian gauge field Ai and a scalar potential V (x i)

H =
1

2M
g ij(pi − qAi)(pj − qAj) + V .

Poisson bracket

{f , g} =
∂f
∂x i

∂g
∂pi

− ∂f
∂pi

∂g
∂x i .

Hamilton equations of motion are not manifestly gauge
covariant.
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Conditions for a conserved quantity (2)

Gauge covariant formulation

Π = p − qA = M ẋ .

Hamiltonian becomes

H =
1

2M
g ijΠiΠj + V ,

Covariant Poisson brackets

{f , g} =
∂f
∂x i

∂g
∂Πi

− ∂f
∂Πi

∂g
∂x i + qFij

∂f
∂Πi

∂g
∂Πj

.

where Fij = Aj ;i − Aj ;i is the field strength.
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Conditions for a conserved quantity (3)

Fundamental Poisson brackets

{x i , x j} = 0 , {x i ,Πj} = δi
j , {Πi ,Πj} = qFij ,

Momenta Π are not canonical.
Hamilton’s equations:

ẋ i = {x i , H} =
1
M

g ijΠj ,

Π̇i = {Πi , H} = qFij ẋ j − V,i .
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Conditions for a conserved quantity (5)

Conserved quantities of motion in terms of phase-space
variables (x i ,Πi )

K = K0 +

p
∑

n=1

1
n!

K i1···in
n (x) · · ·Πi1Πin ,

Bracket

{K , H} = 0 .

vanishes.
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Conditions for a conserved quantity (6)

Series of constraints:

K i
1V,i = 0 ,

K0,i + qFjiK
j
1 = MK j

2iV,j .

K (i1···in;in+1)
n + qF (in+1

j K i1···in)j
n+1 =

M
(n + 1)

K i1···in+1j
n+2 V,j

for n = 1 , · · · (p − 2) ,

K
(i1···ip−1;ip)

p−1 + qF (ip
j K

i1···ip−1)j
p = 0 ,

K
(i1···ip;ip+1)
p = 0 .
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Role of Killing-Yano tensors (1)

Stäckel Killing tensor is totally symmetric

K
(i1···ip;ip+1)
p = 0 .

A differential p -form f is called a KY tensor if its covariant
derivative fµ1···µp;λ is totally antisymmetric.

fµ1···(µp ;λ) = 0 .

These two generalization of Killing vectors could be related. Let
fµ1···µp be a KY tensor, then the tensor field

K2µν = fµµ2···µp f µ2···µp
ν ,

is a Stäckel-Killing tensor associated with Killing-Yano tensorf .
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Role of Killing-Yano tensors (2)

In pseudo-classical spinning particles models the condition of
the electromagnetic field Fµν to maintain the non generic
supersymmetry associated with a KY tensor f of rank p is

Fν[µp f ν
µ1···µp−1] = 0 ,

Consequences of this condition for the series of constraints
Assume that the Stäckel-Killing tensor K2µν is associated with a
Killing-Yano tensor fµν

K2µν = fµλf λ
ν .

In this case, condition for the electromagnetic field Fµν reads

Fλ[µf λ
ν] = 0 .
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Role of Killing-Yano tensors (3)

We get

F i2
j K i1j

2 = 0 .

Therefore Killing-Yano tensors prove to produce significant
simplifications in the series of constraints for the higher order
integrals of motion.
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Examples (1)

Consider M to be a 3-dimensional Euclidean space E
3

We investigate the constant of motion in a Kepler-Coulomb
potential adding different types of electric and magnetic fields
We consider the motion of a point charge q of mass M in the
Coulomb potential Q/r produce by a charge Q when some
external electric or magnetic fields are also present.
Non relativistic Kepler-Coulomb problem admits two vector
constants of motion

angular momentum

L = r × Π ,

Runge-Lenz vector

K = Π × L + MqQ
r
r

.
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Examples (2)
I. Constant electric field

Electric charge q moves in the Coulomb potential with a
constant electric field E present.

Hamiltonian:

H =
1

2M
Π

2 + q
Q
r
− qE · r ,

with Π = M ṙ in spherical coordinates of E
3.
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Examples (3)
I. Constant electric field

Looking for a constant of motion of the form

K = K0 + K1iΠi +
1
2

K2ijΠiΠj .

Components K2ij are Stäckel-Killing tensors, of rank p = 2

K2ij = 2δijn · r − (ni rj + njni) ,

written in spherical coordinates with n an arbitrary constant
vector.

Choose n along E
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Examples (4)
I. Constant electric field

Solution of the series of constraints for a first integral of motion

K0 =
MqQ

r
E · r − Mq

2
E · [r × (r × E)] .

K1 = r × E ,

modulo an arbitrary constant factor. This vector K1 contribute to
a conserved quantity with a term proportional to the angular
momentum L along the direction of the electric field E. In
conclusion, when a uniform constant electric field is present,
the KC system admits two constants of motion L · E and C · E
where C is a generalization of the Runge-Lenz vector

C = K − Mq
2

r × (r × E) .
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Examples (5)
II. Spherically symmetric magnetic field

Spherically symmetric magnetic field

B = f (r)r ,

Fij = ǫijkBk = ǫijk rk f (r) ,

+ Coulomb potential acting on a electric charge q.
Start with a Stäckel-Killing K2ij of rank 2 as in in the previous
example.
From the hierarchy of constraints we get

K1i = q
[
∫

rf (r)dr
]

(n × r)i ,
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Examples (6)
II. Spherically symmetric magnetic field

Equation for K0 can be solely solved making choice of a definite
form for the function f (r)

f (r) =
g

r5/2
,

with g a constant connected with the strength of the magnetic
field.
With this special form of the function f (r) we get

K0 =

[

MqQ
r

− 2g2q2

r

]

(n · r) ,

and

K1i = −2gq
r1/2

(r × n)i .
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Examples (7)
II. Spherically symmetric magnetic field

Collecting the terms K0, K1i , K2ij the constant of motion
becomes

K = n ·
(

K +
2gq
r1/2

L − 2g2q2 r
r

)

,

with n an arbitrary constant unit vector and K, L as in the pure
Coulomb problem.
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Examples (8)
III. Magnetic field along a fixed direction

Magnetic field along a fixed direction n

B = B(r · n)n ,

where, for the beginning, B(r · n) is an arbitrary function.
Again start with a Stäckel-Killing K2ij of rank 2 and we get

K1i = q
[
∫

rB(r · n)d(r · n)

]

(r × n)i .

Equation for K0 proves to be solvable for a particular form of the
magnetic field

B =
α√

αr · n + β
n ,

with α, β two arbitrary constants.
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Examples (9)
III. Magnetic field along a fixed direction

Finally we get for K0 and K1i

K0 =
MqQ

r
(r · n) + αq2(r × n)2 ,

K1i = −2q
√

αr · n + β (r × n)i .

Constant of motion for this configuration of the magnetic field
superposed on the Coulomb potential becomes:

K = n ·
[

K + 2q
√

αr · n + β L
]

+ αq2(r × n)2 .

As in the previous example the angular momentum L is no
longer conserved, forming part of the constant of motion K .
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Outlook

Non-Abelian dynamics

N-dimensional curved spaces

Higher order Killing tensors (rank ≥ 3)

.....
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