Higher order integrals of motion in a gauge covariant Hamiltonian framework

Mihai Visinescu

Department of Theoretical Physics
National Institute for Physics and Nuclear Engineering "Horia Hulubei"
Bucharest, Romania

Second HEP School in Mgurele Măgurele, Bucharest, 22-23 October 2009

Outline

(1) Conditions for a conserved quantity
(2) Role of Killing-Yano tensors
(3) Examples
(9) Outlook
(3) References

Conditions for a conserved quantity (1)

Let $(\mathcal{M}, \mathbf{g})$ a N-dimensional manifold with the metric tensor \mathbf{g}.
Classical dynamics of a point charge q of mass M in the external Abelian gauge field A_{i} and a scalar potential $V\left(x^{i}\right)$

$$
H=\frac{1}{2 M} g^{i j}\left(p_{i}-q A_{i}\right)\left(p_{j}-q A_{j}\right)+V .
$$

Poisson bracket

$$
\{f, g\}=\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial x^{i}}
$$

Hamilton equations of motion are not manifestly gauge covariant.

Conditions for a conserved quantity (2)

Gauge covariant formulation

$$
\boldsymbol{\Pi}=\mathbf{p}-q \mathbf{A}=M \dot{\mathbf{x}} .
$$

Hamiltonian becomes

$$
H=\frac{1}{2 M} g^{i j} \Pi_{i} \Pi_{j}+V,
$$

Covariant Poisson brackets

$$
\{f, g\}=\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial \Pi_{i}}-\frac{\partial f}{\partial \Pi_{i}} \frac{\partial g}{\partial x^{i}}+q F_{i j} \frac{\partial f}{\partial \Pi_{i}} \frac{\partial g}{\partial \Pi_{j}} .
$$

where $F_{i j}=A_{j ; i}-A_{j ; i}$ is the field strength.

Conditions for a conserved quantity (3)

Fundamental Poisson brackets

$$
\left\{x^{i}, x^{j}\right\}=0,\left\{x^{i}, \Pi_{j}\right\}=\delta_{j}^{i},\left\{\Pi_{i}, \Pi_{j}\right\}=q F_{i j},
$$

Momenta Π are not canonical. Hamilton's equations:

$$
\begin{gathered}
\dot{x}^{i}=\left\{x^{i}, H\right\}=\frac{1}{M} g^{i j} \Pi_{j}, \\
\dot{\Pi}_{i}=\left\{\Pi_{i}, H\right\}=q F_{i j} \dot{x}^{j}-v_{, i} .
\end{gathered}
$$

Conditions for a conserved quantity (5)

Conserved quantities of motion in terms of phase-space variables (x^{i}, Π_{i})

$$
K=K_{0}+\sum_{n=1}^{p} \frac{1}{n!} K_{n}^{i_{1} \cdots i_{n}}(x) \cdots \Pi_{i_{1}} \Pi_{i_{n}},
$$

Bracket

$$
\{K, H\}=0 .
$$

vanishes.

Conditions for a conserved quantity (6)

Series of constraints:

$$
K_{1}^{i} V_{, i}=0,
$$

$$
K_{0, i}+q F_{j i} K_{1}^{j}=M K_{2 i}^{j} V_{j,} .
$$

$$
\begin{aligned}
& K_{n}^{\left(i_{1} \cdots i_{n} ; i_{n+1}\right)}+q F_{j}^{\left(i_{n+1}\right.} K_{n+1}^{\left.i_{1} \cdots i_{n}\right) j}=\frac{M}{(n+1)} K_{n+2}^{i_{n} \ldots i_{n+1} j} V_{j} \\
& \text { for } n=1, \cdots(p-2),
\end{aligned}
$$

$$
K_{p-1}^{\left(i_{1} \cdots i_{p-1} ; i_{p}\right)}+q F_{j}^{\left(i_{p}\right.} K_{p}^{\left.i_{1} \cdots i_{p-1}\right) j}=0,
$$

$$
K_{p}^{\left(i_{1} \cdots i_{p} ; i_{p+1}\right)}=0 .
$$

Role of Killing-Yano tensors (1)

Stäckel Killing tensor is totally symmetric

$$
K_{p}^{\left(i_{1} \cdots i_{p} ; i_{p+1}\right)}=0
$$

A differential p-form f is called a KY tensor if its covariant derivative $f_{\mu_{1} \ldots \mu_{p} ; \lambda}$ is totally antisymmetric.

$$
f_{\mu_{1} \cdots\left(\mu_{p} ; \lambda\right)}=0 .
$$

These two generalization of Killing vectors could be related. Let $f_{\mu_{1} \ldots \mu_{p}}$ be a KY tensor, then the tensor field

$$
K_{2 \mu \nu}=f_{\mu \mu_{2} \cdots \mu_{p}} f_{\nu}^{\mu_{2} \cdots \mu_{p}},
$$

is a Stäckel-Killing tensor associated with Killing-Yano tensorf.

Role of Killing-Yano tensors (2)

In pseudo-classical spinning particles models the condition of the electromagnetic field $F_{\mu \nu}$ to maintain the non generic supersymmetry associated with a KY tensor f of rank p is

$$
F_{\nu\left[\mu_{\rho}\right.} f_{\left.\mu_{1} \cdots \mu_{\rho-1}\right]}^{\nu}=0,
$$

Consequences of this condition for the series of constraints Assume that the Stäckel-Killing tensor $K_{2 \mu \nu}$ is associated with a Killing-Yano tensor $f_{\mu \nu}$

$$
K_{2 \mu \nu}=f_{\mu \lambda} f_{\nu}^{\lambda} .
$$

In this case, condition for the electromagnetic field $F_{\mu \nu}$ reads

$$
F_{\lambda[\mu} f_{\nu]}^{\lambda}=0 .
$$

Role of Killing-Yano tensors (3)

We get

$$
F_{j}{ }^{i}{ }_{2} K_{2}^{i, j}=0 .
$$

Therefore Killing-Yano tensors prove to produce significant simplifications in the series of constraints for the higher order integrals of motion.

Consider \mathcal{M} to be a 3 -dimensional Euclidean space \mathbb{E}^{3} We investigate the constant of motion in a Kepler-Coulomb potential adding different types of electric and magnetic fields We consider the motion of a point charge q of mass M in the Coulomb potential Q / r produce by a charge Q when some external electric or magnetic fields are also present.
Non relativistic Kepler-Coulomb problem admits two vector constants of motion

- angular momentum

$$
\mathbf{L}=\mathbf{r} \times \mathbf{\Pi},
$$

- Runge-Lenz vector

$$
\mathbf{K}=\boldsymbol{\Pi} \times \mathbf{L}+M q Q_{\frac{\mathbf{r}}{r}} .
$$

Electric charge q moves in the Coulomb potential with a constant electric field E present.

Hamiltonian:

$$
H=\frac{1}{2 M} \boldsymbol{\Pi}^{2}+q \frac{Q}{r}-q \mathbf{E} \cdot \mathbf{r}
$$

with $\Pi=M \dot{\mathbf{r}}$ in spherical coordinates of \mathbb{E}^{3}.

Looking for a constant of motion of the form

$$
K=K_{0}+K_{1 i} \Pi_{i}+\frac{1}{2} K_{2 i j} \Pi_{i} \Pi_{j}
$$

Components $K_{2 i j}$ are Stäckel-Killing tensors, of rank $p=2$

$$
K_{2 i j}=2 \delta_{i j} \mathbf{n} \cdot \mathbf{r}-\left(n_{i} r_{j}+n_{j} n_{i}\right),
$$

written in spherical coordinates with \mathbf{n} an arbitrary constant vector.

Choose \mathbf{n} along \mathbf{E}

Examples (4)

I. Constant electric field

Solution of the series of constraints for a first integral of motion

$$
K_{0}=\frac{M q Q}{r} \mathbf{E} \cdot \mathbf{r}-\frac{M q}{2} \mathbf{E} \cdot[\mathbf{r} \times(\mathbf{r} \times \mathbf{E})]
$$

$$
\mathbf{K}_{1}=\mathbf{r} \times \mathbf{E}
$$

modulo an arbitrary constant factor. This vector \mathbf{K}_{1} contribute to a conserved quantity with a term proportional to the angular momentum \mathbf{L} along the direction of the electric field \mathbf{E}. In conclusion, when a uniform constant electric field is present, the KC system admits two constants of motion L.E and C • E where \mathbf{C} is a generalization of the Runge-Lenz vector

$$
\mathbf{C}=\mathbf{K}-\frac{M q}{2} \mathbf{r} \times(\mathbf{r} \times \mathbf{E})
$$

Examples (5)

II. Spherically symmetric magnetic field

Spherically symmetric magnetic field

$$
\begin{gathered}
\mathbf{B}=f(r) \mathbf{r} \\
F_{i j}=\epsilon_{i j k} B_{k}=\epsilon_{i j k} r_{k} f(r),
\end{gathered}
$$

+ Coulomb potential acting on a electric charge q.
Start with a Stäckel-Killing $K_{2 i j}$ of rank 2 as in in the previous example.
From the hierarchy of constraints we get

$$
K_{1 i}=q\left[\int r f(r) d r\right](\mathbf{n} \times \mathbf{r})_{i}
$$

Examples (6)

II. Spherically symmetric magnetic field

Equation for K_{0} can be solely solved making choice of a definite form for the function $f(r)$

$$
f(r)=\frac{g}{r^{5 / 2}}
$$

with g a constant connected with the strength of the magnetic field.
With this special form of the function $f(r)$ we get

$$
K_{0}=\left[\frac{M q Q}{r}-\frac{2 g^{2} q^{2}}{r}\right](\mathbf{n} \cdot \mathbf{r})
$$

and

$$
K_{1 i}=-\frac{2 g q}{r^{1 / 2}}(\mathbf{r} \times \mathbf{n})_{i}
$$

Collecting the terms $K_{0}, K_{1 i}, K_{2 i j}$ the constant of motion becomes

$$
K=\mathbf{n} \cdot\left(\mathbf{K}+\frac{2 g q}{r^{1 / 2}} \mathbf{L}-2 g^{2} q^{2} \frac{\mathbf{r}}{r}\right),
$$

with \mathbf{n} an arbitrary constant unit vector and \mathbf{K}, \mathbf{L} as in the pure Coulomb problem.

Magnetic field along a fixed direction \mathbf{n}

$$
\mathbf{B}=B(\mathbf{r} \cdot \mathbf{n}) \mathbf{n},
$$

where, for the beginning, $B(\mathbf{r} \cdot \mathbf{n})$ is an arbitrary function. Again start with a Stäckel-Killing $K_{2 i j}$ of rank 2 and we get

$$
K_{1 i}=q\left[\int r B(\mathbf{r} \cdot \mathbf{n}) d(\mathbf{r} \cdot \mathbf{n})\right](\mathbf{r} \times \mathbf{n})_{i} .
$$

Equation for K_{0} proves to be solvable for a particular form of the magnetic field

$$
\mathbf{B}=\frac{\alpha}{\sqrt{\alpha \mathbf{r} \cdot \mathbf{n}+\beta}} \mathbf{n},
$$

with α, β two arbitrary constants.

Finally we get for K_{0} and $K_{1 i}$

$$
\begin{aligned}
& K_{0}=\frac{M q Q}{r}(\mathbf{r} \cdot \mathbf{n})+\alpha q^{2}(\mathbf{r} \times \mathbf{n})^{2} \\
& K_{1 i}=-2 q \sqrt{\alpha \mathbf{r} \cdot \mathbf{n}+\beta}(\mathbf{r} \times \mathbf{n})_{i}
\end{aligned}
$$

Constant of motion for this configuration of the magnetic field superposed on the Coulomb potential becomes:

$$
K=\mathbf{n} \cdot[\mathbf{K}+2 q \sqrt{\alpha \mathbf{r} \cdot \mathbf{n}+\beta} \mathbf{L}]+\alpha q^{2}(\mathbf{r} \times \mathbf{n})^{2}
$$

As in the previous example the angular momentum L is no longer conserved, forming part of the constant of motion K.

Outlook

- Non-Abelian dynamics
- N-dimensional curved spaces
- Higher order Killing tensors (rank ≥ 3)
-

References

- M. Visinescu, arXiv:0910.3474 [hep-th]
- J. W. van Holten, Phys. Rev. D 75, 025027 (2007)
- P. A. Horvathy and J. P. Ngome, Phys. Rev. D 79, 127701 (2009)
- J. P. Ngome, arXiv:0908. 1204 [math-ph].

