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Introduction

Quantum ChromoDynamics at 37 years is in very good shape

perturbative QCD

quantum corrections to higher orders at partonic level

quark and gluon distribution functions

nonperturbative QCD

lattice (“ab initio” calculations)

effective theories: ChPT, SCET, gluon resummations ...

new ideas for the strong coupling regime: AdS/CFT ....

QCD: The Modern View of the Strong Interactions

Berlin, 4-9 October 2009
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Introduction

the strong coupling αs: fundamental parameter of QCD

LQCD =
6

∑
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αs = g2
s

4π
, as = αs

π

after renormalization: αs(µ
2) becomes scale and scheme dependent

scale dependence (RGE): µ2das/dµ
2 = β(as) = −

∑

j≥0

βja
j+2
s

β0 = 9/4, β1 = 4 independent of RS nf = 3

β2 = 10.06, β3 = 47.23 nf = 3; MS scheme

αs(µ
2) ∼ 1/ lnµ2 for µ2 → ∞; “asymptotic freedom”
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Introduction

determination of αs: from all types of reactions that contain gluons

deep inelastic ep scattering, e+e− collisions, p(p̄)-p collisions,
τ hadronic decays, Υ decays....

measure αs at various scales ⇒ evolve by RGE to a
reference point

PDG average (2008):

αs(M
2

Z
) = 0.1176 ± 0.0020

World Average 2009 S. Bethke. arXiv:0908.1135 [hep-ph]

αs(M
2

Z
) = 0.1184 ± 0.0007

impressive consistency; overall error mostly theoretical
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Introduction

Ex: τ hadronic decays:

Rτ = Γ[τ→hadrons +ντ ]
Γ[τ→µ +ν̄µ +ντ ] = 3.640 ± 0.010 LEP, CLEO

Rτ ∼ SEW(1 + δ(0))

δ(0) ∼ d1αs + d2α
2
s + d3α

3
s + d4α

4
s + . . . QCD correction

precise determination of αs at a low scale (mτ = 1.78 GeV)

recent calculations in perturbative QCD up to fourth order
Baikov, Chetyrkin & Kuhn 2008

precise experimental data (ALEPH analysis of the full LEP data)

IFIN-HH, October 23, 2009 – p. 5/24



Introduction

Recent analyses based on two methods:

Contour Improved Perturbation Theory (CIPT):

αs(m
2
τ ) = 0.344 ± 0.009 Davier et al 2008

Fixed Order Perturbation Theory (FOPT):

αs(m
2
τ ) = 0.320+0.012

−0.007
Beneke & Jamin 2008

discrepancy of 0.024 between CIPT and FOPT

largest systematic theoretical uncertainty in αs(m
2
τ )

Aim of this talk: understand/remove this difference
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Outline

Standard CIPT and FOPT

Higher orders in perturbative QCD

Realistic models Beneke & Jamin 2008

New perturbation expansions Caprini & Fischer 1999, 2000, 2002

New CIPT and FOPT Caprini & Fischer 2009

Results and conclusions
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CIPT and FOPT

Rτ ∼ 1 + δ(0) = 12π
m2

τ
∫

4m2
π

ds
m2

τ
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)2(

1 + 2 s
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τ

)

Im Π(s)

Π(s): polarization function ∼ i
∫

dx eipx 〈Ω|T{Jµ(x) Jν(0)
†}|Ω〉

Π(s) analytic in the cut s-plane
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Cauchy theorem: ⇒

δ(0) = 1
2πi

∮

|s|=m2
τ

ds
s
ω(s) D̂(s)

ω(s) = 1 − 2s/m2
τ + 2(s/m2

τ )
3 − (s/m2

τ )
4

D̂(s) = − s d
ds

[

Π(s)
]

− 1: reduced Adler function
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CIPT and FOPT

standard perturbation series

D̂(s) =
∑

n≥1

[Kn + κn(s)] (as(µ
2))n, nf = 3, MS

K1 = 1, K2 = 1.64, K3 = 6.37, K4 = 49.08, K5 ∼ 283

κn(s) =
n

∑

k=1

γkn lnk(−s/µ2)

choose µ2 = m2
τ ⇒ FOPT

choose µ2 = −s ⇒ CIPT (renormalization-group improved series)

D̂(s) =
∑

n≥1

Kn (as(−s))n

expanding αs(−s) =
∑

ck(−s/m2
τ ) (αs(m

2
τ ))

k ⇒ FOPT
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CIPT and FOPT

αs(m
2
τ ) determined from the equation δ

(0)
theor = δ

(0)
phen

δ
(0)
phen = 0.2042 ± 0.0050 Beneke & Jamin 2008

FOPT: δ
(0)
theor contains explicitly αs(m

2
τ )

large imaginary parts of lnk(−s/m2
τ) for s = m2

τe
i(ϕ−π) ⇒

poor convergence

CIPT: αs(−s) in terms of αs(m
2
τ ) by solving numerically the RGE

avoids large logs ⇒ in principle superior

but fails to describe the high-order behavior of the series
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High-order behavior

classes of Feynman diagrams ⇒ Kn ∼ n!

the perturbation series is divergent — known for QED since 1952

the series is usually interpreted as asymptotic Dyson 1952

ambiguity in recovering the function from its coefficients

A possible summation — Laplace-Borel transform

bn = Kn+1

βn
0 n!

⇒ B(u) =
∞
∑

n=0

bnu
n ⇒ D̂(s) = 1

β0

∞
∫

0

e−u/(β0as(s)) B(u) du

if the series defining B(u) has a nonzero convergence radius

and B(u) admits an analytic continuation regular for u > 0

⇒ D̂(s) exists and is analytic in a certain region
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Borel plane in QCD

B(u) has two cuts on the real axis, for u ≤ −1 and u ≥ 2

(ultraviolet and infrared renormalons)

∞
∑

n=0

bnu
n convergences in |u| < 1

near the first branch points

B(u) ∼ r1
(1+u)γ1

, B(u) ∼ r2
(1−u/2)γ2

γ1 and γ2 known Mueller 1985, Beneke, Braun & Kivel 1997

Laplace-Borel integral not defined ⇒ D̂(s) not Borel summable

⇒ adopt a prescription, ex. the Principal Value

D̂(s) = 1
β0

PV
∞
∫

0

e−u/(β0as(s)) B(u) du
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“Physical” models Beneke & Jamin 2008

toy models which reproduces the low and high perturbative orders
of the Adler function in massless QCD

the “exact” Adler function is defined as:

D̂(s) = 1

β0
PV

∞
∫

0

e−u/(β0as(s)) BBJ(u) du

as(s) calculated exactly from RGE with β function with four
Taylor terms known for QCD

BBJ(u): a parametrization consisting of UV and IR renormalons
with specified branch point behaviour, multiplied by polynomials

parameters adjusted such as to reproduce the first 5 coefficients
Kn, known from Feynman diagrams
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CIPT and FOPT for the B&J models

2 4 6 8 10 12 14 16 18
Perturbative oder N

0.12

0.16

0.2

0.24

0.28

0.32

0.36

δ(0
)

CIPT

FOPT

Beneke & Jamin 2008

δ(0) calculated with the standard CIPT and FOPT as a function of the

order up to which the series have been summed, for αs(m
2
τ ) = 0.34

horizontal band: the exact value

CIPT fails to approximate the true function Beneke & Jamin 2008
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Basic idea of a new expansion: analytic continuation

the series B(u) =
∞
∑

n=0

bnu
n

converges only in |u| < 1

”Optimal” conformal mapping:

w(u) =
√

1+u−
√

1−u/2
√

1+u+
√

1−u/2

maps the Borel cut u-plane onto |w| < 1; w(0) = 0

the series B(u) =
∑

n

dn wn

converges in the whole u-plane

best convergence for interior points Ciulli & Fischer 1961
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New perturbative expansions

insert B(u) =
∑

n

dn wn in the Laplace-Borel transform

suggests the definition of the new expansion Caprini & Fischer 1999

D̂(s) =
∑

n

dnWn(s)

Wn(s) = 1
β0

PV
∞
∫

0

e−u/(β0as(s)) wn du

improved expansion: include the singular behaviour at the first

branch-points

D̂(s) =
∑

n

cnWn(s)

Wn(s) = 1
β0

PV
∞
∫

0

e−u/(β0as(s)) wn

(1+w)2γ1 (1−w)2γ2
du
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Properties of the new expansion

when reexpanded in powers of as(s), it reproduces the coefficients Kn

known from Feynman diagrams

the expansion Wn(s) =
∑

k ωnk(as(s))
k of each Wn(s) in

powers of the coupling is divergent, much like the expansion of

D̂(s) itself

under certain conditions, the expansion

D̂(s) =
∑

n

dnWn(s)

is convergent in a domain of the energy s-plane

Caprini & Fischer 2000, 2002
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Standard and new expansions for the B&J models
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δ(0) for the standard CIPT and FOPT (left) and the new CIPT and

FOPT (right), for αs(m
2
τ ) = 0.34

horizontal band: the exact value
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Standard and new CIPT for the B&J models

0 0.5 1 1.5 2 2.5 3
ϕ (radians)

0.05

0.1
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Borel sum real part
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CIPT  N=5
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CIPT  N=10

0 0.5 1 1.5 2 2.5 3
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0.05

0.075

0.1

0.125

0.15

Borel sum real part

CIPT new N=4
CIPT new N=5
CIPT new N=7
CIPT new N=10
CIPT new N=15

Real part of D̂(s) for s = m2
τe

iϕ, calculated with the standard CIPT

(left) and the new CIPT (right)

very good local approximations with the new CIPT
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Standard and new FOPT for the B&J models
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FOPT  N=4
FOPT  N=5
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FOPT  N=10
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FOPT new  N=4
FOPT new  N=5
FOPT new  N=7
FOPT new  N=10
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Real part of D̂(s) for s = m2
τe

iϕ

standard FOPT not very good locally

new FOPT very good near the euclidian axis; shows the poor

convergence of the expansion of αs(s) on the circle
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Remarks on the method

the truncated expansion D̂(s) =
N
∑

n=0

cnWn(s), expanded in powers

of as(s), contains an infinite number of terms

N = 3, input K1,K2,K3,K4

⇒ K5 = 256 close to K5 = 283

N = 4, input K1,K2,K3,K4,K5

⇒ K6 = 2929, K7 = 1.73 · 104...... compared to

K6 = 3275, K7 = 1.88 · 104 in the B&J model

⇒ Prediction of higher order terms !
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Conclusions from the physical models

the standard expansions exhibit large oscillations for N > 10

the standard CIPT fails to reproduce the model at low orders

the results of standard FOPT are not precise locally; the good values

of δ(0) are due to compensations of terms

the new CIPT gives a precise description which improves by

increasing the truncation order (checked up to N = 36)

the new FOPT gives a precise description in the regions where the

effect of the imaginary logarithms is small
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Determination of αs

Solve the equation δ
(0)
theor = δ

(0)
phen

with δ
(0)
phen = 0.2042 ± 0.0050 Beneke & Jamin 2008

new CIPT:

αs(m
2
τ ) = 0.3198 ± 0.0042exp

+0.0099
−0.0076 K5

+0.0015
−0.0019 scale

new FOPT:

αs(m
2
τ ) = 0.3113 ± 0.0038exp ± 0.0013K5

+0.0103
−0.0006 scale

the difference between CIPT and FOPT reduces to 0.009

the optimal expansion: ⇒

αs(m
2
τ ) = 0.320 +0.011

−0.009 ⇒ αs(M
2
Z) = 0.1180 +0.0015

−0.0010
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Conclusions

QCD is a consistent theory reaching the level of precise predictions

αs determinations provide a solid test of QCD

the perturbative expansion of QCD can be improved by including

information about the divergent character of the series

clarified a theoretical discrepancy in the determination of αs from

τ decays

promising tool for the forthcoming calculations in perturbative QCD
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