Determination of α_{s}
 from hadronic τ decays
 Irinel Caprini
 Department of Theoretical Physics, IFIN-HH

High Energy Physics School
Bucharest, IFIN-HH, October 23, 2009

Introduction

Quantum ChromoDynamics at 37 years is in very good shape

- perturbative QCD
- quantum corrections to higher orders at partonic level
- quark and gluon distribution functions
- nonperturbative QCD
- lattice ("ab initio" calculations)
- effective theories: ChPT, SCET, gluon resummations ...
- new ideas for the strong coupling regime: AdS/CFT

QCD: The Modern View of the Strong Interactions
Berlin, 4-9 October 2009

Introduction

- the strong coupling α_{s} : fundamental parameter of QCD

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\sum_{\mathrm{n}=1}^{6} \bar{\psi}_{\mathrm{n}}\left[\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}-\operatorname{ig}_{\mathrm{s}} \frac{\lambda^{\mathrm{a}}}{2} \mathrm{G}_{\mu}^{\mathrm{a}}\right)-\mathrm{m}_{\mathrm{n}}\right] \psi_{\mathrm{n}}-\frac{1}{4} \sum_{\mathrm{a}=1}^{8} \mathrm{G}_{\mu \nu}^{\mathrm{a}} \mathrm{G}^{\mu \nu, \mathrm{a}} \\
& \mathrm{G}_{\mu \nu}^{\mathrm{a}}=\partial_{\mu} \mathrm{G}_{\nu}^{\mathrm{a}}-\partial_{\nu} \mathrm{G}_{\mu}^{\mathrm{a}}-\mathrm{g}_{\mathrm{s}} \mathrm{f}_{\mathrm{abc}} \mathrm{G}_{\mu}^{\mathrm{b}} \mathrm{G}_{\nu}^{\mathrm{c}} \\
& \alpha_{\mathrm{s}}=\frac{\mathrm{g}_{\mathrm{s}}^{2}}{4 \pi}, \quad \mathrm{a}_{\mathrm{s}}=\frac{\alpha_{\mathrm{s}}}{\pi}
\end{aligned}
$$

- after renormalization: $\alpha_{\mathrm{s}}\left(\mu^{2}\right)$ becomes scale and scheme dependent
- scale dependence (RGE): $\mu^{2} \mathrm{da}_{\mathrm{s}} / \mathrm{d} \mu^{2}=\beta\left(\mathrm{a}_{\mathrm{s}}\right)=-\sum_{\mathrm{j} \geq 0} \beta_{\mathrm{j}} \mathrm{a}_{\mathrm{s}}^{\mathrm{j}+2}$

$$
\begin{aligned}
& \beta_{0}=9 / 4, \quad \beta_{1}=4 \quad \text { independent of } \mathrm{RS} \quad \mathrm{n}_{\mathrm{f}}=3 \\
& \beta_{2}=10.06, \beta_{3}=47.23 \quad \mathrm{n}_{\mathrm{f}}=3 ; \quad \overline{\mathrm{MS}} \text { scheme } \\
& \alpha_{\mathrm{s}}\left(\mu^{2}\right) \sim 1 / \ln \mu^{2} \quad \text { for } \quad \mu^{2} \rightarrow \infty ; \quad \text { "asymptotic freedom" }
\end{aligned}
$$

Introduction

- determination of α_{s} : from all types of reactions that contain gluons
- deep inelastic ep scattering, $\mathrm{e}^{+} \mathrm{e}^{-}$collisions, $\mathrm{p}(\overline{\mathrm{p}})-\mathrm{p}$ collisions, τ hadronic decays, Υ decays....
- measure α_{s} at various scales \Rightarrow evolve by RGE to a reference point
- PDG average (2008):

$$
\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}^{2}\right)=0.1176 \pm 0.0020
$$

- World Average 2009 S. Bethke. arXiv:0908.1135 [hep-ph]

$$
\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}^{2}\right)=0.1184 \pm 0.0007
$$

- impressive consistency; overall error mostly theoretical

Introduction

- Ex: τ hadronic decays:

$$
\mathrm{R}_{\tau}=\frac{\Gamma\left[\tau \rightarrow \text { hadrons }+\nu_{\tau}\right]}{\Gamma\left[\tau \rightarrow \mu+\bar{\nu}_{\mu}+\nu_{\tau}\right]}=3.640 \pm 0.010 \quad \text { LEP, CLEO }
$$

- $\mathrm{R}_{\tau} \sim \mathrm{S}_{\mathrm{EW}}\left(1+\delta^{(0)}\right)$
- $\delta^{(0)} \sim \mathrm{d}_{1} \alpha_{\mathrm{s}}+\mathrm{d}_{2} \alpha_{\mathrm{s}}^{2}+\mathrm{d}_{3} \alpha_{\mathrm{s}}^{3}+\mathrm{d}_{4} \alpha_{\mathrm{s}}^{4}+\ldots$
- precise determination of α_{s} at a low scale $\left(\mathrm{m}_{\tau}=1.78 \mathrm{GeV}\right)$
- recent calculations in perturbative QCD up to fourth order Baikov, Chetyrkin \& Kuhn 2008
- precise experimental data (ALEPH analysis of the full LEP data)

Introduction

- Recent analyses based on two methods:
- Contour Improved Perturbation Theory (CIPT):

$$
\alpha_{\mathrm{s}}\left(\mathrm{~m}_{\tau}^{2}\right)=0.344 \pm 0.009 \quad \text { Davier et al } 2008
$$

- Fixed Order Perturbation Theory (FOPT):

$$
\alpha_{\mathbf{s}}\left(\mathrm{m}_{\tau}^{2}\right)=0.320_{-0.007}^{+0.012} \quad \text { Beneke \& Jamin } 2008
$$

- discrepancy of 0.024 between CIPT and FOPT
- largest systematic theoretical uncertainty in $\alpha_{\mathbf{s}}\left(\mathrm{m}_{\tau}^{2}\right)$
- Aim of this talk: understand/remove this difference

Outline

- Standard CIPT and FOPT
- Higher orders in perturbative QCD
- Realistic models Beneke \& Jamin 2008
- New perturbation expansions Caprini \& Fischer 1999, 2000, 2002
- New CIPT and FOPT Caprini \& Fischer 2009
- Results and conclusions

CIPT and FOPT

- $\mathrm{R}_{\tau} \sim 1+\delta^{(0)}=12 \pi \int_{4 \mathrm{~m}_{\pi}^{2}}^{\mathrm{m}_{\tau}^{2}} \frac{\mathrm{ds}}{\mathrm{m}_{\tau}^{2}}\left(1-\frac{\mathrm{s}}{\mathrm{m}_{\tau}^{2}}\right)^{2}\left(1+2 \frac{\mathrm{~s}}{\mathrm{~m}_{\tau}^{2}}\right) \operatorname{Im} \Pi(\mathrm{s})$
- $\Pi(\mathrm{s})$: polarization function $\sim \mathrm{i} \int \mathrm{dx} \mathrm{e}^{\mathrm{ipx}}\langle\Omega| \mathrm{T}\left\{\mathrm{J}_{\mu}(\mathrm{x}) \mathrm{J}_{\nu}(0)^{\dagger}\right\}|\Omega\rangle$
- $\Pi(s)$ analytic in the cut s-plane
- Cauchy theorem: \Rightarrow
$\delta^{(0)}=\frac{1}{2 \pi \mathrm{i}} \underset{|\mathrm{s}|=\mathrm{m}_{\tau}^{2}}{ } \frac{\mathrm{ds}}{\mathrm{s}} \omega(\mathrm{s}) \hat{\mathrm{D}}(\mathrm{s})$

- $\omega(\mathrm{s})=1-2 \mathrm{~s} / \mathrm{m}_{\tau}^{2}+2\left(\mathrm{~s} / \mathrm{m}_{\tau}^{2}\right)^{3}-\left(\mathrm{s} / \mathrm{m}_{\tau}^{2}\right)^{4}$
- $\hat{D}(s)=-s \frac{d}{d s}[\Pi(s)]-1$: reduced Adler function

CIPT and FOPT

- standard perturbation series

$$
\begin{aligned}
& \hat{\mathrm{D}}(\mathrm{~s})=\sum_{\mathrm{n} \geq 1}\left[\mathrm{~K}_{\mathrm{n}}+\kappa_{\mathrm{n}}(\mathrm{~s})\right]\left(\mathrm{a}_{\mathrm{s}}\left(\mu^{2}\right)\right)^{\mathrm{n}}, \quad \mathrm{n}_{\mathrm{f}}=3, \overline{\mathrm{MS}} \\
& \quad \mathrm{~K}_{1}=1, \mathrm{~K}_{2}=1.64, \mathrm{~K}_{3}=6.37, \mathrm{~K}_{4}=49.08, \mathrm{~K}_{5} \sim 283 \\
& \quad \kappa_{\mathrm{n}}(\mathrm{~s})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \gamma_{\mathrm{kn}} \ln ^{\mathrm{k}}\left(-\mathrm{s} / \mu^{2}\right)
\end{aligned}
$$

- choose $\mu^{2}=\mathrm{m}_{\tau}^{2} \Rightarrow$ FOPT
- choose $\mu^{2}=-\mathrm{s} \Rightarrow$ CIPT (renormalization-group improved series)
$\hat{D}(s)=\sum_{n \geq 1} K_{n}\left(a_{s}(-s)\right)^{n}$
- expanding $\alpha_{\mathrm{s}}(-\mathrm{s})=\sum \mathrm{c}_{\mathrm{k}}\left(-\mathrm{s} / \mathrm{m}_{\tau}^{2}\right)\left(\alpha_{\mathrm{s}}\left(\mathrm{m}_{\tau}^{2}\right)\right)^{\mathrm{k}} \Rightarrow$ FOPT

CIPT and FOPT

- $\alpha_{\mathbf{s}}\left(\mathrm{m}_{\tau}^{2}\right)$ determined from the equation $\delta_{\text {theor }}^{(0)}=\delta_{\text {phen }}^{(0)}$

$$
\delta_{\text {phen }}^{(0)}=0.2042 \pm 0.0050 \quad \text { Beneke \& Jamin } 2008
$$

- FOPT: $\delta_{\text {theor }}^{(0)}$ contains explicitly $\alpha_{\mathbf{s}}\left(\mathrm{m}_{\tau}^{2}\right)$
- large imaginary parts of $\ln ^{\mathrm{k}}\left(-\mathrm{s} / \mathrm{m}_{\tau}^{2}\right)$ for $\mathrm{s}=\mathrm{m}_{\tau}^{2} \mathrm{e}^{\mathrm{i}(\varphi-\pi)} \Rightarrow$ poor convergence
- CIPT: $\alpha_{\mathrm{s}}(-\mathrm{s})$ in terms of $\alpha_{\mathrm{s}}\left(\mathrm{m}_{\tau}^{2}\right)$ by solving numerically the RGE
- avoids large logs \Rightarrow in principle superior
- but fails to describe the high-order behavior of the series

High-order behavior

- classes of Feynman diagrams $\Rightarrow K_{n} \sim n$!
- the perturbation series is divergent — known for QED since 1952
- the series is usually interpreted as asymptotic Dyson 1952
- ambiguity in recovering the function from its coefficients
- A possible summation - Laplace-Borel transform
$b_{n}=\frac{\mathrm{K}_{\mathrm{n}+1}}{\beta_{0}^{\mathrm{n}!}} \Rightarrow \mathrm{B}(\mathrm{u})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{b}_{\mathrm{n}} \mathrm{u}^{\mathrm{n}} \Rightarrow \hat{\mathrm{D}}(\mathrm{s})=\frac{1}{\beta_{0}} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{u} /\left(\beta_{0} a_{\mathrm{s}}(\mathrm{s})\right)} \mathrm{B}(\mathrm{u}) \mathrm{du}$
- if the series defining $B(u)$ has a nonzero convergence radius
- and $B(u)$ admits an analytic continuation regular for $u>0$
- $\Rightarrow \hat{D}(\mathrm{~s})$ exists and is analytic in a certain region

Borel plane in QCD

- $\mathrm{B}(\mathrm{u})$ has two cuts on the real axis, for $\mathrm{u} \leq-1$ and $\mathrm{u} \geq 2$ (ultraviolet and infrared renormalons)
- $\sum_{n=0}^{\infty} b_{n} u^{n}$ convergences in $|u|<1$
- near the first branch points

$$
\mathrm{B}(\mathrm{u}) \sim \frac{\mathrm{r}_{1}}{(1+\mathrm{u})^{\gamma_{1}}}, \quad \mathrm{~B}(\mathrm{u}) \sim \frac{\mathrm{r}_{2}}{(1-\mathrm{u} / 2)^{\gamma_{2}}}
$$

- γ_{1} and γ_{2} known Mueller 1985, Beneke, Braun \& Kivel 1997
- Laplace-Borel integral not defined $\Rightarrow \hat{D}(\mathrm{~s})$ not Borel summable
- \Rightarrow adopt a prescription, ex. the Principal Value

$$
\hat{\mathrm{D}}(\mathrm{~s})=\frac{1}{\beta_{0}} \mathrm{PV} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{u} /\left(\beta_{0} \mathrm{as}_{\mathrm{s}}(\mathrm{~s})\right)} \mathrm{B}(\mathrm{u}) \mathrm{du}
$$

"Physical" models Beneke \& Jamin 2008

- toy models which reproduces the low and high perturbative orders of the Adler function in massless QCD
- the "exact" Adler function is defined as:

$$
\hat{D}(s)=\frac{1}{\beta_{0}} P V \int_{0}^{\infty} \mathrm{e}^{-u /\left(\beta_{0} a_{s}(s)\right)} \mathrm{B}_{\mathrm{BJ}}(\mathrm{u}) \mathrm{du}
$$

- $\mathrm{a}_{\mathbf{s}}(\mathrm{s})$ calculated exactly from RGE with β function with four Taylor terms known for QCD
- $\mathrm{B}_{\mathrm{BJ}}(\mathrm{u})$: a parametrization consisting of UV and IR renormalons with specified branch point behaviour, multiplied by polynomials
- parameters adjusted such as to reproduce the first 5 coefficients K_{n}, known from Feynman diagrams

CIPT and FOPT for the B\&J models

Beneke \& Jamin 2008

- $\delta^{(0)}$ calculated with the standard CIPT and FOPT as a function of the order up to which the series have been summed, for $\alpha_{s}\left(\mathrm{~m}_{\tau}^{2}\right)=0.34$
- horizontal band: the exact value
- CIPT fails to approximate the true function Beneke \& Jamin 2008

Basic idea of a new expansion: analytic continuation

- the series $B(u)=\sum_{n=0}^{\infty} b_{n} u^{n}$
- converges only in $|\mathrm{u}|<1$
- "Optimal" conformal mapping:
$\mathrm{w}(\mathrm{u})=\frac{\sqrt{1+\mathrm{u}}-\sqrt{1-\mathrm{u} / 2}}{\sqrt{1+\mathrm{u}}+\sqrt{1-\mathrm{u} / 2}}$

- maps the Borel cut u-plane onto $|w|<1 ; \quad w(0)=0$
- the series $B(u)=\sum_{n} d_{n} w^{n}$
- converges in the whole u-plane
- best convergence for interior points

New perturbative expansions

- insert $B(u)=\sum_{n} d_{n} w^{n} \quad$ in the Laplace-Borel transform
- suggests the definition of the new expansion

$$
\hat{D}(s)=\sum_{n} d_{n} W_{n}(s)
$$

$$
\mathrm{W}_{\mathrm{n}}(\mathrm{~s})=\frac{1}{\beta_{0}} \mathrm{PV} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{u} /\left(\beta_{0} \mathrm{a}_{\mathrm{s}}(\mathrm{~s})\right)} \mathrm{w}^{\mathrm{n}} \mathrm{du}
$$

- improved expansion: include the singular behaviour at the first branch-points
$\hat{\mathrm{D}}(\mathrm{s})=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \mathcal{W}_{\mathrm{n}}(\mathrm{s})$
$\mathcal{W}_{\mathrm{n}}(\mathrm{s})=\frac{1}{\beta_{0}} \mathrm{PV} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{u} /\left(\beta_{0} \mathrm{a}_{\mathrm{s}}(\mathrm{s})\right)} \frac{\mathrm{w}^{\mathrm{n}}}{(1+\mathrm{w})^{\gamma_{1}(1-w)^{2 \gamma_{2}}}} \mathrm{du}$

Properties of the new expansion

- when reexpanded in powers of $a_{s}(s)$, it reproduces the coefficients K_{n} known from Feynman diagrams
- the expansion $W_{n}(s)=\sum_{k} \omega_{n k}\left(a_{s}(s)\right)^{k}$ of each $W_{n}(s)$ in powers of the coupling is divergent, much like the expansion of $\hat{D}(s)$ itself
- under certain conditions, the expansion

$$
\hat{D}(s)=\sum_{n} d_{n} W_{n}(s)
$$

is convergent in a domain of the energy s-plane

Standard and new expansions for the B\&J models

- $\delta^{(0)}$ for the standard CIPT and FOPT (left) and the new CIPT and FOPT (right), for $\alpha_{\mathrm{s}}\left(\mathrm{m}_{\tau}^{2}\right)=0.34$
- horizontal band: the exact value

Standard and new CIPT for the B\&J models

- Real part of $\hat{D}(s)$ for $s=m_{\tau}^{2} \mathrm{e}^{\mathrm{i} \varphi}$, calculated with the standard CIPT (left) and the new CIPT (right)
- very good local approximations with the new CIPT

Standard and new FOPT for the B\&J models

- Real part of $\hat{D}(\mathrm{~s})$ for $\mathrm{s}=\mathrm{m}_{\tau}^{2} \mathrm{e}^{\mathrm{i} \varphi}$
- standard FOPT not very good locally
- new FOPT very good near the euclidian axis; shows the poor convergence of the expansion of $\alpha_{\mathrm{s}}(\mathrm{s})$ on the circle

Remarks on the method

- the truncated expansion $\hat{D}(s)=\sum_{n=0}^{N} c_{n} \mathcal{W}_{n}(s)$, expanded in powers of $a_{s}(s)$, contains an infinite number of terms
- $\mathrm{N}=3$, input $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}$

$$
\Rightarrow \mathrm{K}_{5}=256 \text { close to } \mathrm{K}_{5}=283
$$

- $\mathrm{N}=4$, input $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}$

$$
\begin{aligned}
\Rightarrow \quad & \mathrm{K}_{6}=2929, \mathrm{~K}_{7}=1.73 \cdot 10^{4} \ldots \ldots \text { compared to } \\
& \mathrm{K}_{6}=3275, \mathrm{~K}_{7}=1.88 \cdot 10^{4} \text { in the B\&J model }
\end{aligned}
$$

\Rightarrow Prediction of higher order terms !

Conclusions from the physical models

- the standard expansions exhibit large oscillations for $\mathrm{N}>10$
- the standard CIPT fails to reproduce the model at low orders
- the results of standard FOPT are not precise locally; the good values of $\delta^{(0)}$ are due to compensations of terms
- the new CIPT gives a precise description which improves by increasing the truncation order (checked up to $\mathrm{N}=36$)
- the new FOPT gives a precise description in the regions where the effect of the imaginary logarithms is small

Determination of α_{s}

- Solve the equation

$$
\delta_{\text {theor }}^{(0)}=\delta_{\text {phen }}^{(0)}
$$

with $\delta_{\text {phen }}^{(0)}=0.2042 \pm 0.0050 \quad$ Beneke \& Jamin 2008

- new CIPT:

$$
\alpha_{\mathrm{s}}\left(\mathrm{~m}_{\tau}^{2}\right)=0.3198 \pm 0.0042_{\exp }{ }_{-0.0076 \mathrm{~K}_{5}}^{+0.0099}{ }_{-0.0019}^{+0.0015} \text { scale }
$$

- new FOPT:

$$
\alpha_{\mathrm{s}}\left(\mathrm{~m}_{\tau}^{2}\right)=0.3113 \pm 0.0038_{\exp } \pm 0.0013_{\mathrm{K}_{5}}{ }_{-0.0006 \text { scale }}^{+0.0103}
$$

- the difference between CIPT and FOPT reduces to 0.009
- the optimal expansion: \Rightarrow

$$
\alpha_{\mathrm{s}}\left(\mathrm{~m}_{\tau}^{2}\right)=0.320_{-0.009}^{+0.011} \Rightarrow \alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}^{2}\right)=0.1180_{-0.0010}^{+0.0015}
$$

Conclusions

- QCD is a consistent theory reaching the level of precise predictions
- α_{s} determinations provide a solid test of QCD
- the perturbative expansion of QCD can be improved by including information about the divergent character of the series
- clarified a theoretical discrepancy in the determination of α_{s} from τ decays
- promising tool for the forthcoming calculations in perturbative QCD

