Profiling Analysis at Startup

Jim Cochran Iowa State

Charge from Rob & Michael

Best guess as to the loads analysis will place on the facilities (starting from physics working group plans, job and task definitions) :

- likely dataset distributions to the Tier 2 (content and type)
- users submission and data retrieval activity

Outline:

- Review run1 load estimate (moving target) and concerns
- Focus on expectations from 1st 1-2 months
- Recommendation on dataset "distributions" (my personal suggestion)

To set the scale

From USATLAS db (Dec. 2008):

Total people in US ATLAS = 664 Total students = 140 Total postdocs = 90 Total research scientists = 105 Total faculty = 140

~375 potential analyzers

During STEP09, supported ~200 non-HC users (see Kaushik's talk) - but activity profile likely was not what we will have with real data

ATLAS Analysis Model – analyzer view

ESD/AOD, D¹PD, D²PD - POOL based

D³PD - flat ntuple

August 19, 2009

US ATLAS T2/T3 Workshop at UChicago

Expected analysis patterns for early data

Assume bulk of group/user activity will happen on T2s/T3s (define user accessible area of T1 as a T3 [BAF/WAF])

Assume final stage of analysis (plots) happens on T3s (T2s are not interactive) [except for WAF]

Two primary modes:

- Physics group/user runs jobs on T2s to make tailored dataset (usually D³PD) (potential inputs: ESD,AOD,D¹PD) resultant dataset is then transferred to user's T3 for further analysis
- (2) group/user copies input files to specified T3 (potential inputs: ESD,AOD,D¹PD)
 On T3 group/user either generates reduced dataset for further analysis or performs final analysis on input data set

Choice depends strongly on capabilities of T3, size of input data sets, etc.

Also, expect some users to run D³PD analysis jobs directly on T2 analysis queues

Analysis Requirements Study Group: Initial Estimate

Charge: estimate resources needed for the analysis & performance studies planned for 2009 & 2010

- considerable overlap with some activities of T3 Task Force (worked together, many of the same people)

Motivation: Management needs input from US physics community in order to make decisions/recommendations regarding current and future facilities

Basic idea:	Received rest from 39/43 i	sponses nstitutions
(1) predict (based on institutional polling) US based analyses (2009-	-2010)	guessed for missing 4
(2) classify as: performance, physics-early, physics-late (sort by input	t stream)	
(3) make assumptions about repetition rate (expect to vary with time	early = r late = r	nonths 1-4 nonths 5-11
(4) compute needed storage and cpu-s (using benchmarks)		

Additional inputs & assumptions

<u># of data events</u>

months 1-4: $2 \times 10^6 \text{ s} \times 200 \text{ Hz} = 4 \times 10^8 \text{ events}$

months 5-11: $4 \times 10^6 \text{ s} \times 200 \text{ Hz} = 8 \times 10^8 \text{ events}$

based on current CERN 2009/2010 plan: 1.2×10^9 evts with 1/3 before April 1 and 2/3 after April 1

streaming fractions*

Performance (ESD/pDPD)

egamma	muon	track	W/Z(e)	W/Z(m)	W/Z(T)/mET	gamjet	minbias
0.36	0.17	0.46	0.36	0.17	0.46	0.36	0.10

GB pointed out that I missed the jet pDPD (will fix in next draft)

Physics: 2009 (AOD/D¹PD)

egamma	muon	jet/mET		
0.36	0.17	0.46		

Physics: 2010 (AOD/D¹PD)

egamma	muon	jet/mET		
0.36	0.17	0.46		

* pDPD Streaming fractions were found on the pDPD TWiki in Jan 2009; they are no longer posted – regard as very preliminary

more inputs/assumptions

Institutional response summary:

Performance (ESD \rightarrow D³PD)

egamma	muon	track	W/Z(e)	W/Z(m)	W/Z(T)/mET	gamjet	minbias
26	28	18	16	19	15	9	15

Physics: 2009 (AOD \rightarrow D³PD)

Physics: 2010 (AOD \rightarrow D³PD)

egamma	muon	jet/mET	
31	37	4	

egamma	muon	jet/mET
19	18	3

Assume analyses begun in 2009 continue in 2010

In anticipation of the need for institutional cooperation (common DPDMaker, common D3PD):

Perform	nance	minimal cooperation					Phys (2	2009)		Phys (2	2010)		
egam	mu	trk	W/Z(e)	W/Z(m)	W/Z(T)/mET	gamjet	minbias	egam	mu	jet/mET	egam	mu	jet/mET
15	15	8	8	10	8	5	8	16	18	2	10	8	1

Perform	nance	maximal cooperation					Phys (2	2009)	-	Phys (2	2010)		
egam	mu	trk	W/Z(e)	W/Z(m)	W/Z(T)/mET	gamjet	minbias	egam	mu	jet/mET	egam	mu	jet/mET
7	7	4	4	5	4	3	4	8	9	1	5	4	1

Perform	nance		supermax cooperation					Phys (2	2009)		Phys (2	2010)	
egam	mu	trk	W/Z(e)	W/Z(m)	W/Z(T)/mET	gamjet	minbias	egam	mu	jet/mET	egam	mu	jet/mET
2	2	1	0	0	1	1	1	1	1	1	1	1	1

Tier2 CPU Estimation: Results

compare needed cpu-s with available cpu-s:

	m1-4	m5-11
all analyses independent	8.1	17
minimal cooperation	4.2	8.5
maximal cooperation	2.1	4.3
supermax cooperation	0.4	1.0

kSI2k-s needed/1010

kSI2k-s available/10¹⁰

US Tier2s	4	13
-----------	---	----

Note that having every analysis make its own D³PDs is **not** our model!

We have always known that we will need to cooperate

Available Tier2 cpu should be sufficient for 2009-2010 analyses

Storage plans (as I understand them)

Decided

Included in LCG pledge: T1: All AOD, 20% ESD, 25% RAW each T2: 20% AOD (and/or 20% D¹PD ?)

2 copies of AODs/D¹PDs (data+MC) are distributed over US T2s

1 copy of ESD (data only) distributed over US T2s (expect only for 2009-2010) (may be able to use perfDPDs in some cases)

D¹PDs initially produced from AODs as part of T0 production, replicated to T1s, T2s D¹PDs will be remade from AODs as necessary on the T1

Not Decided

Final content of D¹PDs

Streaming strategy for D¹PDs (3 options under consideration - very active area of discussion) Too early to make decisions about D²PDs

August 19, 2009

US ATLAS T2/T3 Workshop at UChicago

Tier2 Storage Estimation: results

Recall from slide 20,

T2 beyond pledge storage must accommodate 1 set of AODs/D1PDs, 1 set of ESDs, & needs of users/groups (what we are trying to calculate)

subtracting AOD/D¹PD and ESD storage from beyond pledge storage, we find

Available for individual users: m1-4: 0 TB m5-11: 0 TB 17 TB if we assume only 20% ESD

no level of cooperation is sufficient here

We have insufficient analysis storage until Tier2 disk deficiency is resolved

Tier3 CPU & Storage Estimation

T3 CPU and disk calculations essentially same as T2 calculations

Sum # kSI2k-s needed for all analyses at institution (m1-4, m5-11) Compare with # kSI2k-s available in 1 hour at institution's T3

Sum # TB needed for all analyses at institution, compare with # TB available

Each institution was sent estimate & comparison (week of 3/23): asked to correct/confirm – many responses so far (still incorporating)

most T3s have insufficient resources for planned activities - hope remedy from ARA/NSF

Scale of "missing" T3 resources

Summing "missing" T3 resources (for both institutions with & without existing T3 hardware):

	# cores	TB
m1-4	447	161
m5-11	1018	366

Assuming 2 kSI2k/core

This sets the scale for a potential "single" US analysis facility (T3af)

Or, if we sort by geographic region:

	# cores (m1-4)	# cores (m5-11)	TB (m1-4)	TB (m5-11)
Western	111	290	40	105
Midwestern	36	113	13	41
Eastern	299	614	108	221

Already 2 de-facto T3af's: Brookhaven Analysis Facility (BAF) (interactive T1) Western Analysis Facility (WAF) at SLAC (interactive T2)

T2 \rightarrow T3 data transfer

Need: sustained rate of hundred of Mbps

Single dq2_get command from ANL ASC

T2 Site	Tuning 0	Tuning 1
AGLT2_GROUPDISK	-	62 Mbps
BNL-OSG_GROUPDISK	52 Mbps	272 Mbps
SLACXRD_GROUPDISK	27 Mbps	347 Mbps
SWT2_CPG_GROUPDISK	36 Mbps	176 Mbps
NET2_GROUPDISK	83 Mbps	313 Mbps
MWT2_UC_MCDISK	379 Mbps	423 Mbps

Single dq2_get command from Duke

T2 SiteTuning 0Tuning 1AGLT2_GROUPDISK-150 MbpsBNL-OSG_GROUPDISK38 Mbps42 MbpsSLACXRD_GROUPDISK98 Mbps98 MbpsSWT2_CPG_GROUPDISK28 Mbps? MbpsNET2_GROUPDISK38 Mbps120 MbpsMWT2_UC_MCDISK173 Mbpst UChicago

Tuning 0: No Tuning Tuning 1: see Sergei's talk

Readiness Summary

US Resources

Tier2 CPU – ok

Tier2 Disk – analysis will be negatively impacted if deficiency is not resolved

Tier3s –

most have insufficient resources for planned activities - hope for ARA/NSF incorporating T3s into the US T1/T2 system (& testing them) is **urgent** priority support for T3s expected to be a major issue (see tomorrow's talks)

Readiness Testing

Expect ~200 US-based analyses to start in 1st few months of running By now T2 analysis queues are in continuous use but larger scale testing is needed Increasingly expansive robotic & user tests are being planned

Not well tested: large scale data transfers from the T2s to T3s – this is urgent

Expectations: 1st 1-2 months

months 1-2: $1 \times 10^6 \text{ s} \times 200 \text{ Hz} = 2 \times 10^8 \text{ events}$

We already know T2 cpu is sufficient

Storage needed for Beyond LCG Pledge (not yet counting user D3PD needs):

		1 copy
Size/ev	ent	<u>(m1-2)</u>
ESD	700 kB	140 TB
perfDPD	NA	
AOD	170 kB	34 TB
D ¹ PD	30 kB	6 TB
Sim AOD	210 kB	126 TB

For now assuming no factor due to inclusive streaming

Assuming # of MC events = 3x # of data events \rightarrow will not duplicate this [will count only against pledge]

This gives a total disk storage requirement (before user output needs) of

m1-4:	90 TB
-------	-------

Maybe ok if we're not using all pledged resources 17

August 19, 2009

US ATLAS T2/T3 Workshop at UChicag

Recommendation on dataset "distributions" (my personal suggestion)

Recall

Included in LCG pledge: T1: All AOD, 20% ESD, 25% RAW each T2: 20% AOD (and/or 20% D¹PD ?)

2 copies of AODs/D1PDs (data+MC) are distributed over US T2s

1 copy of ESD (data only) distributed over US T2s (expect only for 2009-2010) (may be able to use perfDPDs in some cases)

For 1st 2 months:

AOD/D¹PD storage should not be a problem (assume distribution is handled automatically ?)

For ESDs and pDPDs, should have **all** streams available on T2s

Should we consider associating specific streams to specific T2s?

who decides these ? when ?

Final Comment

Need to perform testing beyond the "20% of T2" level

In lead up to big conference, we will likely be asked to suspend production And allocate all (or almost all) of T2s to analysis - we need to test that we can support this (more intensive HC ?)

Backup Slides

Storage needed for Beyond LCG Pledge (not yet counting user D3PD needs)

	1 copy	1 copy
Size/event	<u>(m1-4)</u>	<u>(m5-11)</u>
ESD 700 kB	280 TB	840 TB
perfDPD NA		
AOD 170 kB	68 TB	204 TB
$D^{1}PD$ 30 kB	12 TB	36 TB
Sim AOD 210 kB	252 TB	756 TB

For now assuming no factor due to inclusive streaming

Assuming # of MC events = 3x # of data events \rightarrow will not duplicate this [will count only against pledge]

This gives a total disk storage requirement (before user output needs) of

m1-4: 180 TB m5-11: 1080 TB 408 TB if we assume only 20% ESD

August 19, 2009

US ATLAS T2/T3 Workshop at UChicago

Available Tier2 resources & what's left over for user D³PD output

	2009 pledge	2009 installed	2009 users	2009 Q3 installed	2009 Q3 users
cpu (kSI2k)	6210	10,026	3816	11,220	5010
disk (TB)	2115	1964	-151	2540	425
assume m1-4 ~ 2009 m5-11 ~ 2009 Q3 US currently behind on 2009 disk pledge					
D. AOD. D^1PD expectations					

values from M. Ernst JOG Apr09 contribution

recall ESD, AOD, D¹PD expectations (previous slide) Available for individual users (D3PD output): m1-4: 180 TB m5-11: 1080 TB 408 TB if we assume only 20% ESD 17 TB if we assume only 20% ESD

Expect actual allocation to be somewhat dynamic, monitored closely by RAC

US ATLAS T2/T3 Workshop at UChicago