

the FOOT Calorimeter @ Torino

Napoli, 26 maggio, 2017

Seniors:

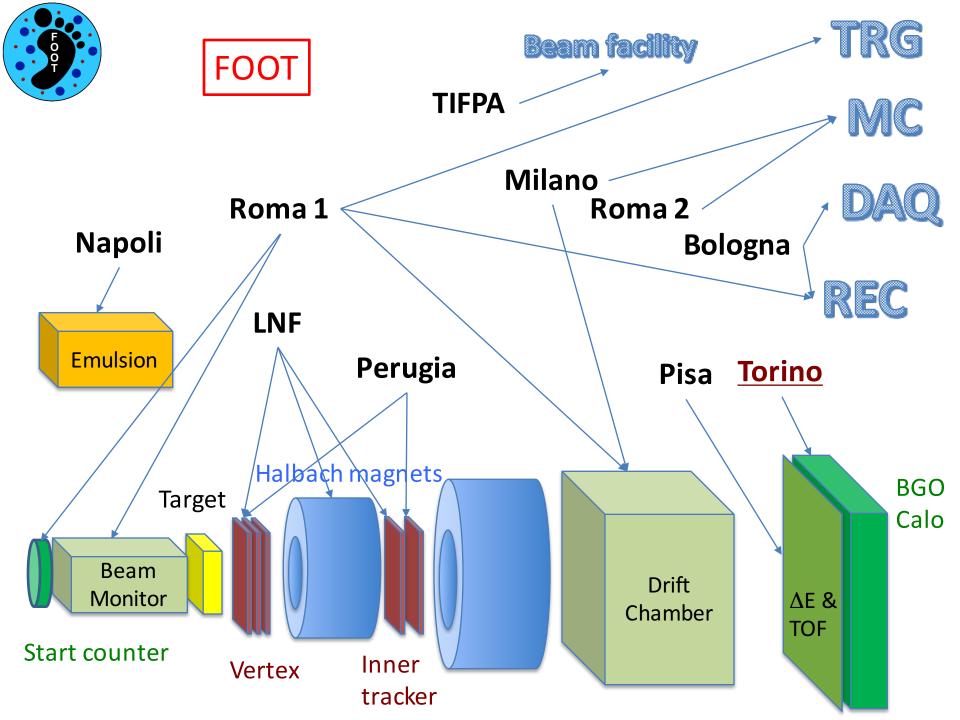
Piergiorgio Cerello (*)

Stefano Argiro'

Mario Sitta

Luciano Ramello

Nadia Pastrone

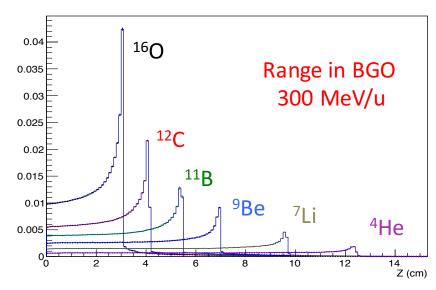

Students:

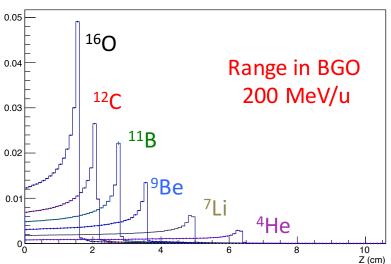
Michael Grippo

a new one entering now

••••

(*) Thanks for preparing the material All errors are my responsability


the FOOT Calorimeter


- Coverage: $\sim 40 \times 40 \text{ cm}^2$ (circular, 40 cm diameter). Maybe extra coverage to recover some of the laterally excaping neutrons
 - 320 -> 400 channels
- Thickness
 - 7 21 cm. Simulations show the recovery of neutrons does not significantly change when increasing the thickness. The final choice will depend on the source of BGO crystals
 - · Buying or recycling?

the FOOT Calorimeter

- High density and good energy resolution -> BGO
- TOF asks for 1.2 m lever arm
- -> R = 20 cm with 10° angular aperture of the fragments
- A 2x2 cm2 granularity is due to the minimum track separation (1deg)
- Thickness must contain the lighter fragment @ 200 MeV/u
 - -> 7 cm
- 2x2x7 cm³ BGO units -> ~ 320 channels

Read-out: not critical due to the high light yield, low rate (PMT, APD, SiPM)

the FOOT Calorimeter: questions

- Trigger source? How we trigger?
- Number of channels: ~ 320 cristalli
 - PMT: 320
 - SiPM (5 mm pitch): 320 * 16 = 5120
- Event volume:
 - PMT: 2-3 bytes
 - SiPM: $\sim 50 100$ bytes
- Maximum acquisition rate
 - BGO: decay time: 300 ns -> \times 3 ~ 1 μ s -> 1 MHz
- Deadtime: ~1 µs → occupancy ~0.01
- How we read-out?
 - To be defined: VME, fiber,?
 - Which infos (time, position, energy, etc...) and precision?

the FOOT Calorimeter: plans

- Crystals assembly
 - Optical isolation?
 - Readout: PMT o SiPM?
- To do: SiPM investigation next 12 months
 - Crystals: « Vincenzo will take care »...
 - SiPM: FBK (AdvansiD) to be contacted
 - Readout chip: TOF-PET-v2 ASIC available in Torino (charge integration). Dynamic range to be verified if compatible with BGO signal amplitudes.
 - Prototype construction: 2x2, test in lab ??3x3 test beam at CNAO with p and ^{12}C
- PMT: backup solution HZC Photonics

The prototype

- The prototype
 - BGO: 4 crystals (2x2x7 cm³)
 available, tested on ⁶⁰Co
 source in lab. with old PMTs
 - PMTs: arrived on May, 25th.
 - SiPM: to be evaluated
- · Test: CNAO, end of July
 - Energy scan with protons and carbon ions
 - Energy resolution, linearity

Conclusions

- Outcome CSN3
- Simulations (Cristina / Giuseppe)
- Prototype construction:
 - BGO
 - PMT
 - SiPM?
- · Test: CNAO available
- · Tasks/Timeline