

Outline, Cont'd

Lecture 4

- ☐ Early LHC physics measurements Physics Commissioning
 - Luminosity measurement
 - Impact of pile-up
 - Underlying Event
 - Dealing with instrumental issues in measurements
 - ☐ Missing Transverse Energy catch-all of instrumental problems
 - ☐ Jet Energy scale
 - Calibrating the Standard Model backgrounds
 - e.g. QCD jet production, Electroweak measurements, Top quark measurements

First Physics Measurements – "Physics Commissioning"

LHC

Luminosity

LBV 1806-20

What is Luminosity?

- Luminosity is a measure of the "brightness" of the colliding beams at a collider
- □ It determines the rate of collisions and, integrated over time, the total number of events in our data samples

Tevatron peak luminosity:

$$\mathcal{L} = 2.8 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

$$\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

Why is luminosity important?

- You want to accumulate
 as much as possible to
 search for rare processes
 - Tevatron Run 2 integrated luminosity is nearly 3 fb-1
 - Standard Model Higgs search requires several times more than that

You need to know the denominator of your cross section measurement!

$$\sigma = \frac{N_{sel}}{\varepsilon L}$$

Luminosity from Machine Parameters

- $\square \mathcal{L} = (k N_p^2 f) / (4\pi \sigma_x \sigma_y)$
 - \blacksquare f = revolution frequency
 - N_p = number of protons per bunch (assumed equal)
 - \blacksquare k = number of bunches (2808)
 - σ_{x} , σ_{y} = transverse sizes of the beam
- ☐ Goal is to maximize £
 - Increase N_p as much as possible
 - Increase bunch crossing frequency
 - Decrease beam cross section
- And if we can measure these parameters, we also have a measurement of the luminosity
 - "Van der Meer scan" of stepping beams through each other to determine parameters from count rates

See lectures by Dr. Wenninger for more information on LHC

Luminosity – Also a Critical Analysis Ingredient

☐ Generally one is interested in measuring the cross section of an interesting process at a collider:

$$\sigma = \frac{N_{sei}}{\varepsilon L}$$

- N_{sel} = number of selected interesting events
- $\mathbf{\epsilon}$ = efficiency to select those events
- L = total integrated luminosity (cm⁻², or fb⁻¹ = 10^{-39} cm⁻²)
- Can spend a lot of time determining cuts to isolate the interesting events of a particular process from a myriad of ordinary Standard Model backgrounds, and measuring, or otherwise simulating, the efficiency of those cuts and estimating systematic uncertainties
- But it is also important and necessary to measure the luminosity accurately and precisely
 - Even better to have several handles cross-checking

Processes from which to Measure Luminosity

- The luminosity measurement should provide quick feedback to the accelerator operators and to the experiment, so need good statistics on short timescales
 - e.g. to providebunch-by-bunchluminosity →

Filled bunches

@ Tevatron
from CDF
measurement

- ☐ Choose high cross-section processes at colliders:
 - e^+e^- : Bhabha scattering $e^+e^- \rightarrow e^+e^-$
 - ep : ep bremsstrahlung ep → epγ
 - \blacksquare pp: inelastic scattering pp \rightarrow X

Luminosity from total inelastic cross section

- \square Rate of inelastic collisions: $R = \sigma \mathcal{L}$
 - σ = inelastic cross section (cm², or barns)
- \square Rate is also $R=\mu f_{BC}$
 - μ = average number of inelastic collisions per bunch crossing
 - \mathbf{f}_{BC} = frequency of bunch crossings
- So experimentally, instantaneous luminosity can be measured by:
 - \blacksquare $\mathcal{L}=\mu f_{BC}/\sigma$
 - \blacksquare f_{BC} comes from machine design
 - σ must be measured, or otherwise calculated, from the process used to measure luminosity
 - \blacksquare Measure μ from your detector

Methods to measure μ : Zero Counting Method

- The probability of n inelastic collisions in a given bunch crossing, given a mean number of collisions μ , is given by Poisson formula:
 - P(n) = $\exp(-\mu) \mu^n / n!$
- ☐ The probability of zero collisions is:
 - P(O) = $exp(-\mu)$
- \square Thus, one can measure the fraction of empty bunch crossings to get μ :
 - $\blacksquare \quad \mu = \ln P(O)$
- In practice, a detector is not 100% efficient at detecting a collision due to limited angulae coverage and detection inefficiency
 - P(O) = exp(-εμ), ε = efficiency
- One also can have backgrounds or detector noise that can mimic a detector response from a collision
 - Trickier to deal with if cannot be removed
- ☐ Limitation:
 - "Zero starvation" at high luminosity (i.e. if μ » 1, so that P(O) is small)
 - This makes the measurement susceptible to systematic uncertainties
 - e.g. Backgrounds or noise that mimic a collision and bias μ larger, or inefficiencies that bias μ smaller, have a fractionally larger bias

Methods to measure μ : Hit/Particle counting

- Rather than try to measure the fraction of empty events, measure the number of detector elements hit (counters, towers), or better the number of collision particles, in a beam crossing
- $\square \quad \mu = \langle N_H \rangle / \langle N_H^1 \rangle$
- $\square \langle N_H \rangle = measured number of hits or particles$
- $\square \langle N_H^1 \rangle = \text{number of hits, or particles, for a single collision}$
 - Could be measured from counting a fraction of the charged particles in a collision, for example
 - Need good separation of one collision from two, and avoid saturation of counters at high luminosity

Detectors for Relative Luminosity Measurement

- A measurement of just about any process with any detector is sensitive to the luminosity
 - Inelastic scattering, W/Z production, J/ Ψ production, ...
 - Calorimeter occupancy/energy, tracking detector currents, tracks,...
- Choose a high cross section process for good statistics
- Choose high acceptance, low noise/background detector or technique to minimize <u>systematic uncertainties</u>
 - Generally means covering the forward regions of collider expt.

CDF Cherenkov Luminosity Counters

- Eta coverage: 3.7 < |η| < 4.7</p>
- Good acceptance: 60%
 - □ 95% of which is from hard-core inelastic collisions
- Cherenkov device :
 - ☐ Good signal:noise separation
 - □ Self calibrating
 - □ Excellent timing
 - □ Directionality

4.2% measurement uncertainty

(6% with cross-section uncertainty)

Total pp Cross Section @ LHC

Large extrapolation from Tevatron to LHC, so large uncertainty until measured [mb] 120 best fit with stat. error band O_{pp} incl. both TEVATRON points Conservatively total error band of best fit 100 100±15 mb total error band from all models Note some 80 Cosmic Rays discrepancy in measurements 60 @ Tevatron J.Cudell et al., 40 mph panagananan PRL 89, 201801 (2002) $\sigma = 111.5 \pm 4.2$ 10³ \sqrt{s} [GeV]

TOTEM Experiment

Dedicated experiment @ LHC (shares P5 with CMS) devoted to measuring the total pp cross section and study elastic and diffractive dissociation

Total cross section & absolute luminosity measurement from elastic scattering

- Optical Theorem: the total cross section is related to the imaginary part of the elastic scattering amplitude extrapolated to zero momentum transfer:
 - Incident flux is removed by total xsec

$$\sigma_{tot} = 4\pi \operatorname{Im} \left[f_{el} \left(t = 0 \right) \right] - t \propto \theta^2$$

 \square Measure the total interaction rate R_{tot} and the elastic rate in the forward direction $(dR_{el}/dt)_{t=0}$

$$\sigma_{tot} = \frac{16\pi}{\left(1 + \rho^2\right)} \frac{\left(dR_{el} / dt\right)_{t=0}}{R_{tot}} \qquad \rho = \frac{\text{Re}\left[f_{el}\left(t\right)\right]}{\text{Im}\left[f_{el}\left(t\right)\right]} \approx 0.14$$

$$L = \frac{R_{tot}}{\sigma_{tot}} = \frac{\left(1 + \rho^2\right) R_{tot}^2}{16\pi \left(dR_{el} / dt\right)_{t=0}}$$

Luminosity cross-checks

With the luminosity measurement from the experiment, useful to make cross-check with other processeses

W Yield vs Inst Lum: 3589-3612

Entries 7448
Prob 0.5307
p0 0.5777±0.00844

20.7

0.6

0.5

0.4

0.3

0.2

0.1

10 20 30 40 50 60 70 80 90 instantaneous luminosity, e30

Pile-up conditions change a- Figure 19: $W \rightarrow e\nu$ yield per instanta-

Figure 18: $J/\psi \to \mu\mu$ yield per instantaneous luminosity bin. The number of reconstructed J/ψ s is flat versus luminosity.

rigure 19: $W \rightarrow e\nu$ yield per instantaneous luminosity bin. The number of reconstructed Ws is flat versus luminosity.

CDF

Luminosity from Standard Candles (W, Z)

- The W boson cross section has been measured to 7% at the Tevatron, and agrees very well with NNLO theory
 - 6% of this uncertainty comes from the luminosity measurement, and only 3.5% from the W measurement itself
- Thus, it may be appropriate to choose such a process to ultimately normalize the luminosity
 - But sacrifices W/Z cross section measurements at the LHC, and measurements of the proton parton densities
 - Also, it may take some time before all systematic uncertainties of this measurement are fully understood
 - ☐ CDF publication came 5 years after Run 2 start

Or skip cross sections, measure relative rates

- Previous example shows that one can usually quote smaller experimental errors by measuring ratios
 - For example, at LHC, perhaps $\sigma(pp \rightarrow H \rightarrow ZZ \rightarrow 4\mu) / \sigma(pp \rightarrow Z \rightarrow \mu\mu)$
- Luminosity will cancel in the ratio
- Many common systematic uncertainties cancel as well
 - e.g. muon reconstruction efficiency (partly)
- Moreover, for new physics searches, generally can set stronger limits (because of smaller systematic uncertainties) by not doing a "dead reckoning" counting experiment
 - i.e. instead of setting an upper limit based on the number of observed candidates and the estimated number of background candidates, let the background float →

Z'→μμ Search Strategy

- Fit mass distribution to expected resonance and background <u>shapes</u>
- Extract significance of excess, and measured mass

Better than trying to estimate absolutely the background in a mass window for the signal Finally, where to report luminosity information?

- □ To the accelerator group for monitoring feedback →
 - Aiming for 1 Hz refresh rate

- Data quality monitoring
 - Online cross sections →
 - Conditions for detectors
- Into database for use in analyses
 - Tools to calculate integrated luminosity for given datasets

What is μ at the LHC anyway? (Pile-up Issues)

- Take total inelastic cross section (hard-core scattering plus diffractive scattering) to be about 80 mb
- In-time pile-up:
 - Time indistinguishable from collision of interesting signal process

$$\mu = \sigma L \Delta t \frac{N_{\text{tot}}}{N_{\text{filled}}}$$

=
$$\left(80 \times 10^{-3} \times 10^{-24} \text{ cm}^2\right) \times \left(2 \times 10^{33} \text{ cm}^{-2} s^{-1}\right) \times \left(25 \times 10^{-9} \text{ s}\right) \times \frac{3564}{2808}$$

- In addition, pile-up from collisions in bunch crossings just before and just after the signal collision also can affect detector signals
 - Pulses come before or after those from signal process BX

Out-of-time pile-up

☐ Pulses on same electronic channel:

pedestal

- If occupancy is high in detector (e.g. tracking and calorimeters), can affect measurement of pulse
- Ways to combat:
 - Good granularity of detectors
 - Good time resolution from detectors/electronics
 - Dynamic pedestal subtraction (sample signal before main pulse)
 - Use shape of pulse to determine if pile-up occurred, correct or remove
- ☐ For pulses on different channels:
 - If good time resolution, cut out signals not consistent with signal BX

Effect of pile-up on analyses

- If not otherwise removed electronically (not possible for in-time pile-up), adds energy and tracks to the recorded event
 - Adds underlying energy to jets (should be subtracted)
 - Adds underlying energy around otherwise isolated leptons (decreases isolation efficiency)
 - Worsens the resolution on missing transverse energy
 - Complicates calorimeter calibration
- Should be included into Monte Carlo simulations of detector performance
- □ Good tracking capability → reconstruct separate vertices for different collisions
 - Use vertex of signal lepton to determine which vertex, or make choice that highest P_T vertex is signal
 - Base isolation on tracks emanating from same signal vertex, not calorimeter energy

Several Pile-up collisions

n.b. interesting to know what to do for Super-LHC, with L= 10^{35} and 50 ns bunch spacing \rightarrow 350 inelastic proton collisions in one BX!

The "Underlying Event"

- □ The non-perturbative soft QCD energy flow surrounding a hard 2→2 parton scattering in pp collisions
 - Proton remnants
 - Higher-order QCD terms to 2→2 scattering (initial state radiation, final state radiation)

Experimentally, effects are similar to pile-up

U.E. and Minimum Bias Events, Measurables

- ☐ In fact, without the hard scattering, you just have the underlying event, i.e. a "minimum bias" collision
- ☐ The measurable parameters of either are:
 - Charged particle density
 - Charged particle momentum density
 - Total energy density (calorimeter measurements)
- It's actually fairly uncertain at the LHC, though it affects the conditions of every physics signal
 - So it is important to pin down early
- ☐ Since physics is non-perturbative, only have models of this in event generators like Pythia, Herwig

Minimum bias charged particle density

Ways to Measure U.E.

- ☐ Look in regions transverse to jets in dijet events
 - Only slow growth with scale of hard scattering

R.Field et al., PRD 65 (2003) 092002

Different "Tunes" in Generators @ LHC scale

14 June 2007

- Differences in model tunes more prominent the lower in track P_T you go
- Don't need a lot of integrated luminosity, just track reconstruction working efficiently

Missing Transverse Energy

Missing E_T

- Many signatures of new physics involve particles that are invisible to the detector
 - Lightest Supersymmetric Particles (LSP) in MSSM scenarios
 - Extra dimensions (energy escaping into the bulk)
- ☐ Leads to observed momentum imbalance
- Longitudinal momentum not well measured in hadron colliders
 - Particles escape down forward beampipe region (namely p remnant)
- ☐ Measure imbalance in transverse plane only

$$MET_{x} = -\sum_{i} E_{i} \sin \theta_{i} \cos \phi_{i}$$

$$MET_y = -\sum_i E_i \sin \theta_i \sin \phi_i$$

$$|MET| = \sqrt{MET_x^2 + MET_y^2}$$

Sum runs over all calorimeter towers, or more generally, over all "particles"

Problems with Missing E_T

- ☐ Many instrumental issues can mimic momentum imbalance!
 - Dead towers
 - Crącks
 - Noise
 - Miscalibration
 - Jet energy mismeasurement
 - Non-collision backgrounds (cosmic rays, beam halo muons)
 - Beam gas collisions, beam wall collisions, collisions not at nominal vertex (satellite bunches)
 - Offset of beam or detector from nominal z axis
 - Muons (MIPs), for calorimeter-only Missing E_T
- \square Basically a catch-all of any problems (good DQM tool)

Could be considered the "garbage can" dataset!

Beam Halo with bremsstrahlung as seen by calorimeter

Missing E_T "Cleaning"

- ☐ Tight timing cuts on calorimeter deposits
 - Remove out-of-time particles (cosmics, beam halo) and noise
- ☐ Noise suppression algorithms
- Pattern recognition/reconstruction algorithms
 - Remove cosmic muons, beam halo muons
- Event topology
 - Charged particle vertex requirement
 - Jet requirement
 - Charged particle energy fraction of event
 - Electromagnetic energy fraction
 - ☐ Also removes cosmics, halo, ...

EEMF, ECHGF

$$EEMF = \frac{\sum_{j=1}^{N_{jet}} E_T^j \times EMF_j}{\sum_{j=1}^{N_{jet}} E_T^j}$$

$$EMF_j = \text{Jet EM fraction}$$

ECHGF =
$$\frac{1}{N_{jet}} \sum_{j=1}^{N_{jet}} \frac{\sum_{i=1}^{N_{trks}} P_T^{i,j}}{E_T^j}$$

Examples from CDF data

☐ MET dataset:

Effect of MET Clean-up (DO, Run 2)

Effect of MET Clean-up (CDF, Run 2)

n.b. Tevatron Run 2 started March 2001 First paper on pure MET dataset published 2005 Search for Scalar Leptoquark Pairs Decaying to vvqqin pp Collisions at $\sqrt{s} = 1.96$ TeV

Missing E_T corrections

- Can replace MIP deposit in calorimeter with actual measured momentum of reconstructed muons
- Can replace calorimeter cells corresponding to jets with corrected jet energies
 - For example:

$$MET_{x} = -\sum_{i \in \text{unclustered}} E_{i} \sin \theta_{i} \cos \phi_{i} - \sum_{j \in \text{jets}} E_{x,j} - \sum_{k \in \text{muons}} E_{x,k}$$

"Unclustered" is everything except the jets and muons

Jet Energy Corrections (Jet Calibration)

☐ Various physical effects cause measured jet energies not to agree with parton energies:

Neutrinos and muons (MIPs) in jets, different calorimeter response to

different particles at low energy

 Calorimeter response in different fiducial regions

effect of cracks, etc.

- Energy falling outside cone
 - ☐ Finite cone size (or whatever you jet definition is)
 - ☐ Tracks bending outside cone
- Detector noise
- Pile-up

Data-driven ways to calibrate jet energies

- □ Dijet balancing
 - Trigger jet selected to be in well measured region, well above Jet E_T trigger threshold (to avoid energy bias)
 - Study momentum balance with probe jet
- □ Photon/Z+jet balancing
 - Since EM calorimeter will be well calibrated for electron and photon measurements (and muons for Z^o decay), select events with back-to-back photon and jet in transverse plane
- ☐ W mass constraint in hadronic W decays in top quark pair production (overall jet energy scale)
 - Top pairs will be copiously produced at LHC
 - Isolate and use kinematic mass constraint on two jets from W decay

DiJet Balancing

- CMS MC study
- (but technique used since VA2 experiment)

Dijet Balance: 120<Dijet P_⊤<250 GeV

W mass constraint in Top Events

Jet Energy Scale Uncertainty (CMS estimate)

Aiming to achieve 3% JES uncertainty for E_{T} >50 GeV with 1–10 fb⁻¹

Tying it all Together

- Armed with a commissioned, calibrated, aligned detector, and with data cleaned and corrected for basic physics objects, go after measurements of Standard Model processes
 - "Calibration" of the backgrounds for new particle searches
- ☐ For example
 - QCD multi-jet production
 - Z/W+jets production
 - Top pair production
 - Diboson production $(Z,W,\gamma) + (Z,W,\gamma)$

Final Remarks

- Many things not covered, e.g.
 - Grounding issues (commissioning)
 - Measurements, and uncertainties of, partons density functions
- Commissioning is a big job
 - These are the most complex experiments ever built
- Don't expect it to happen overnight patience and perseverance
- Assume nothing, check everything
- But do it well, and your experiment will pay big dividends for years to come in analyses
 - Guaranteed to be a most exciting time in this field starting now!
- ☐ Go forth and make a discovery!
 - ☐ Just don't forget to leave the water running ◎

Some Further Reading

- ☐ CMS Physics Technical Design Report, Vols.1 & 2
 - CERN/LHCC 2006-001 Detector Performance
 - CERN/LHCC 2006-021 Physics Performance
 - □ http://cmsdoc.cern.ch/cms/cpt/tdr/
- ☐ ATLAS Physics Technical Design Report, Vols. 1 & 2
 - CERN/LHCC 1999-14 Detector Performance
 - CERN/LHCC 1999-15 Physics Performance
 - □ http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html

Credits

- ATLAS
- CDF
- CMS
- □ DO
- Angela Acosta
- Christoph Amelung
- ☐ Paolo Bartalini
- ☐ Victor Blobel
- Adolf Bornheim
- ☐ Rick Cavanaugh
- ☐ Sergio Cittolin

- Pawel De Barbaro
- Jorgen D'Hondt
- Domenico Giordano
- □ Rob Harris
- ☐ Khristian Kotov
- ☐ Marcus Stoye
- □ Slawek Tkaczyk
- Dmitri Tsybychev
- ☐ Jim Virdee