Particle detection and reconstruction at the LHC (II)

CERN-Fermilab Hadron Collider Physics Summer School, CERN, 2007 11th to 14th of August 2007 (D. Froidevaux, CERN)

Particle detection and reconstruction Lecturatithe LHC (and Tevatron)

Historical introduction: from UA1/UA2 to ATLAS/CMS

Lecture 2

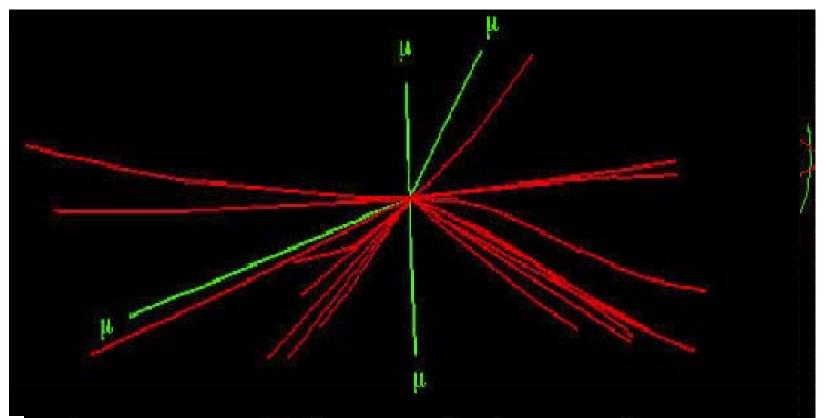
Experimental environment, main design choices and intrinsic performance

Lecture 3

Electrons, photons, muons, τ **-leptons and particle-ID**

Lecture 4

Hadronic jets and neutrinos

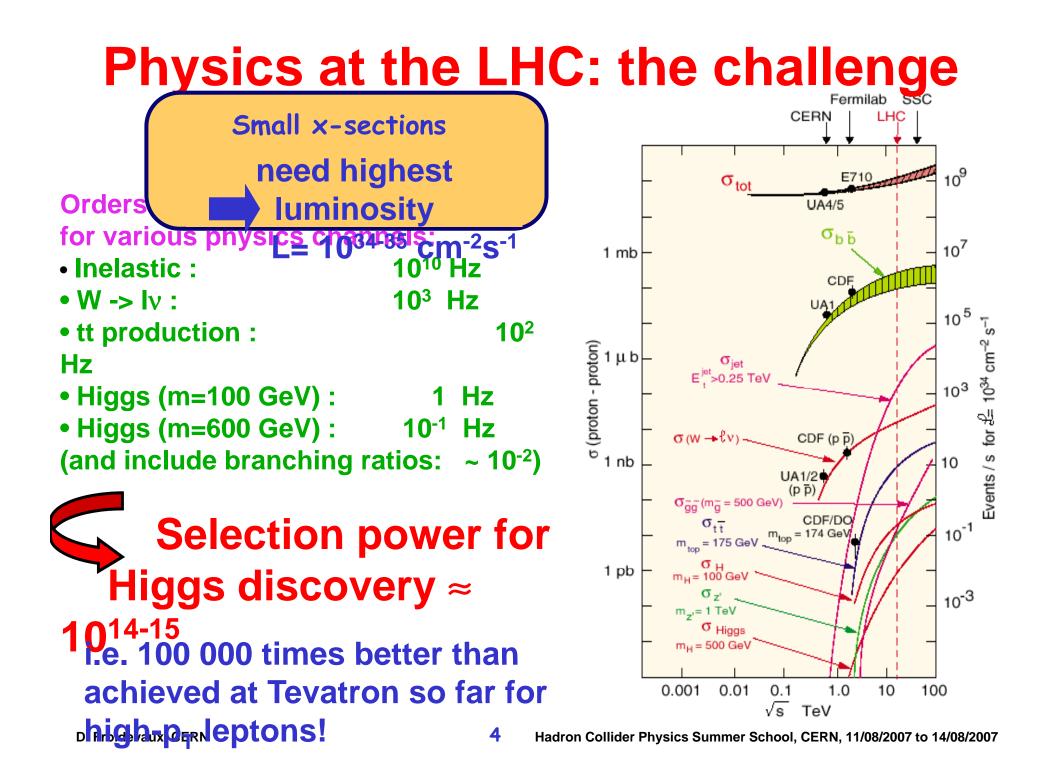

Not covered here

Trigger, data acquisition and offline (see lectures by A. Yagil)
 Calibration, alignment and commissioning (see lectures by D.
 Acosta), CERN
 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Physics at the LHC: the challenge

How to extract this...

... from this ...



Higgs $\rightarrow 4\mu$ +30 min. bias eventsWithout knowing really where to look for!

3

D. Froidevaux, CERN

Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Physics at the LHC: the challenge

LHC is a factory for top, W/Z, Higgs, SUSY, black hole

Expected event rates for representative (known and new) physics processes at low luminosity (L=10³³ cm⁻² s⁻¹) in ATLAS/CMS

Process	Events/s	Events for 10 (one year)) fb ⁻¹ Total statistics collecte elsewhere by 2008 (?)
$W \rightarrow ev$	30	10 ⁸	10 ⁴ LEP / 10 ⁷
$Z \rightarrow ee$	3	10 ⁷	10 ⁶ LEP
Тор	2	10 ⁷	10 ⁴ Tevatron
Beauty	10 ⁶	10 ¹² – 10 ¹³	10 ⁹
Hemer Berline (Hereine Hereine	0.04	10 ⁵	
Gluino (m= 1 TeV)	0.002	10 ⁴	
Black holes m > 3 TeV	0.0002	10 ³	

What do we mean by particle reconstruction and identification at LHC?

Elementary constituents interact as such in "hard processes",

namely:

Du	arks and Leptons	e (0.0005)	μ (0.105)	τ (1.777) cles. and
		V _e	v_{μ}	v_{τ}
	Quarks	u (< 0.005)	c (~ 1.25)	t (~ 175)
		d (< 0.005)	s (~ 0.1)	b (~ 4.2)

Gluons and EW bosons as gauge particles

All

masses in GeV

Gluon(0)	Photon	₩+,₩ ⁻	Ζ	
Colour octet	(0)	(80.42)	(91.188)	

Electrons, neutrinos and photons are the only rigorously stable particles in the zoo

At collider energies, muons can be considered as stable tooSome of the other particles are considered as long-lived (τ, c, b) meaningthat their decay vertex may be measured by vertexing detector (requiresexcellentcaccuracy)6Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Which type of particles does one actually see in the final

- LHC physics processes are dominated by strong interactions (QCD) :
- hard processes: quarks and gluons materialise as hadronic jets, which consist mostly of charged and neutral hadrons (pions, kaons, and to a lesser extent protons and neutrons, which at these energies can be all considered as stable). Jets will be discussed in lecture 4.
- soft processes: non-perturbative QCD processes with soft gluons materialising as almost uniform soup of charged and neutral pions, kaons, etc.
- Heavy quarks with "long" lifetime are produced abundantly also
- High-p_T (above ~ 10 GeV) leptons are produced mostly in c,b decays.
- High-p, isolated leptons may be found in fraction, of J/1/2 and Y and Y

Physics at the LHC: the environment What drives the luminosity at the LHC?
L(α=0) = 1.07 10⁻⁴ 1/Δt N² E / β_e ε, where:

 $\blacksquare \alpha$ is the crossing angle between the beams

N is the number of protons per bunch, $N = 10^{11}$

E is the energy per beam, **E** = 7 TeV

Ξ β_e is the β-function at the interaction point, $\beta_e =$ 0.5 m

8

D. Froidevaux, CERN

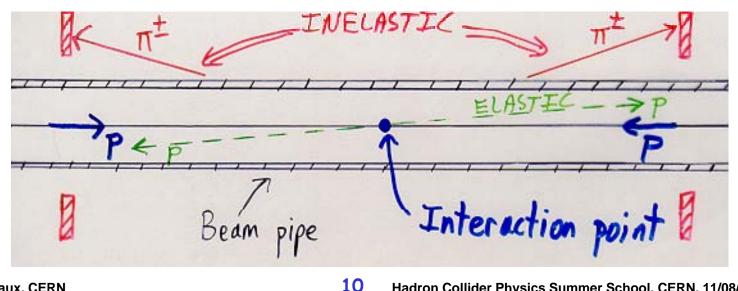
Physics at the LHC: the environment Extract number of inelastic collisions per bunch crossing $<n> = \sigma_{inel} \times L \times \Delta t / \varepsilon_{bunch}$

LHC: <n> = 70 mb x 10³⁴ cm⁻²s⁻¹ x 25 ns / 0.8 = 23

Big change compared to recent and current machines:

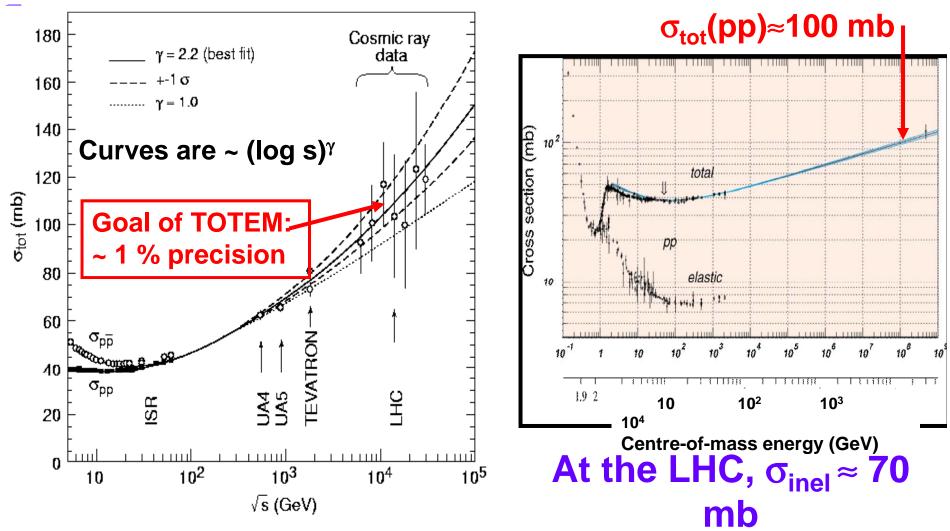
LEP: SppS: HERA: D. Froidevaux, CERN $\Delta t = 22 \ \mu s$ $\Delta t = 3.3 \ \mu s$ $\Delta t = 96 \ ns$

and<n> << 1and $<n> \approx 3$ and<n> << 1

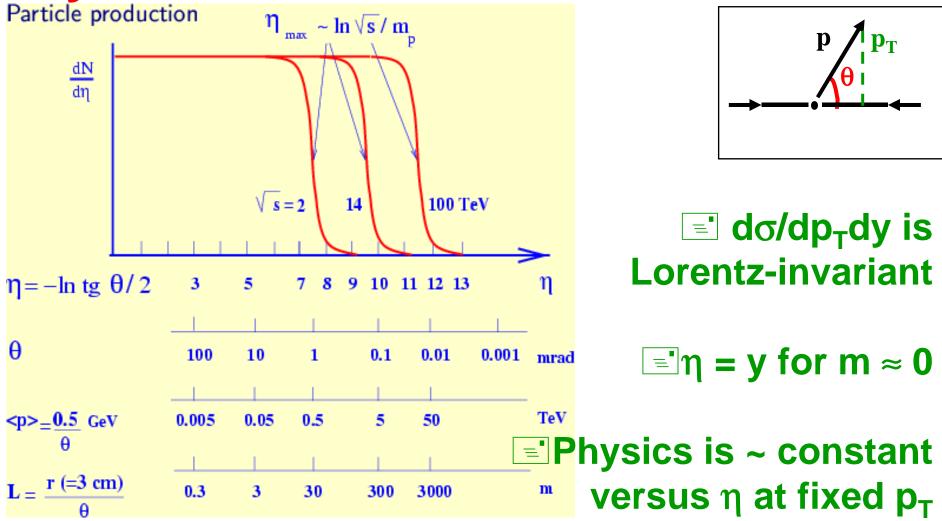

Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

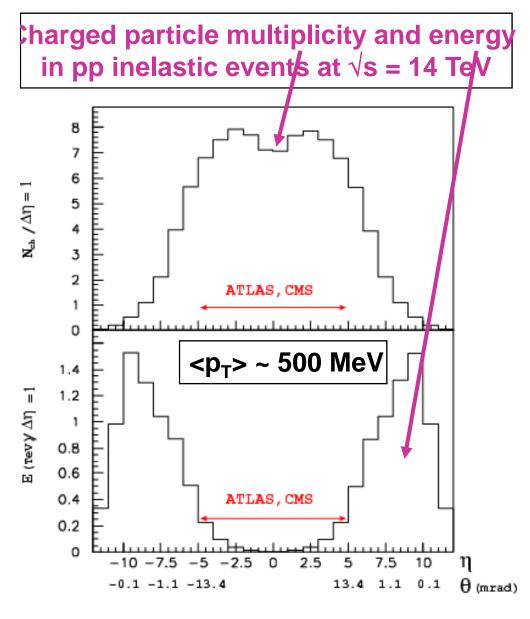
Experimental environment = Machine performance x Physics

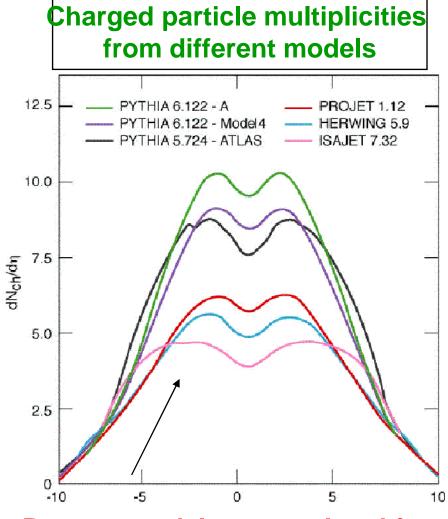
Event rates in detectors:

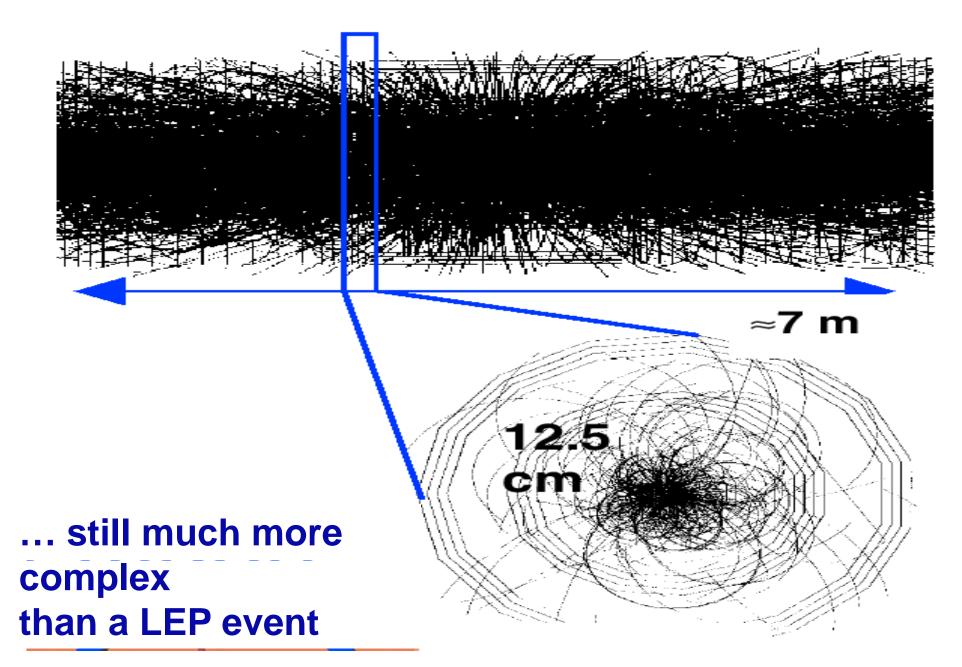

- number of charged tracks expected in inner tracking = detectors
- energy expected to be deposited in calorimeters =
- radiation doses expected (ionising and neutrons) ="

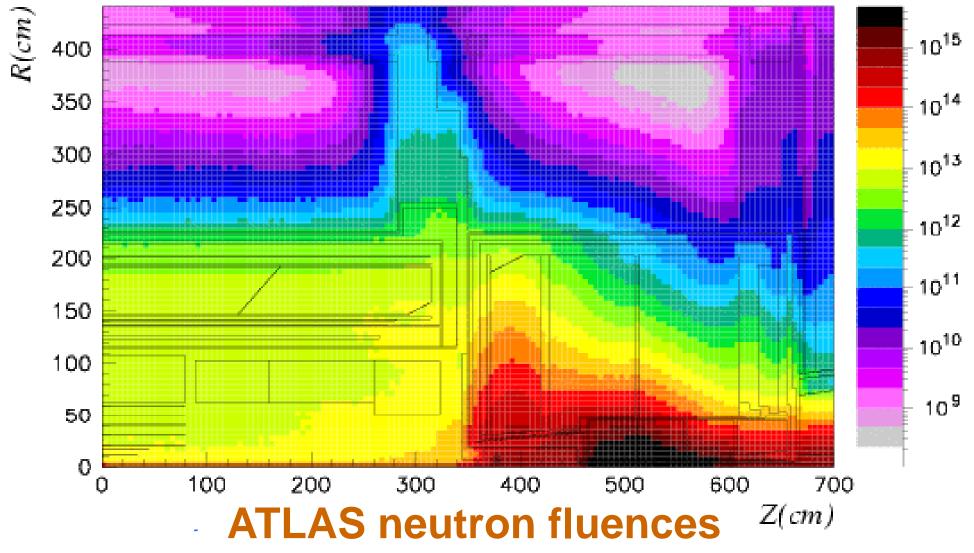
Need to know the cross-section for time and in space) events: simple trigger on these \equiv "minimum bias" trigger




Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007


Measurement of σ_{tot} (pp) and $\sigma_{inel} = \sigma_{tot} - \sigma_{el}$


¹¹



Present models extrapolated from Tevatron give sizeable differences at the LHC

1. Damage caused by ionising radiation

- caused by the energy deposited by particles in the detector material: ~ 2 MeV g⁻¹ cm⁻² for a min. ion. particle
- also caused by photons created in electromagnetic showers
- the damage is proportional to the deposited energy or dose measured in Gy (Gray):
 - 1 Gy = 1 Joule / kg = 100 rads
 - 1 Gy = 3 10⁹ particles per cm² of material with unit density

At LHC design luminosity, the ionising dose is: $\approx~2~10^6$ Gy / r_T^2 / year,

where $r_T(cm)$ is the transverse distance to the

D. Freidevaux-CEPN

2. Damage caused by neutrons

- the neutrons are created in hadronic showers in the calorimeters and even more so in the forward shielding of the detectors and in the beam collimators themselves
- these neutrons (with energies in the 0.1 to 20 MeV range) bounce back and forth (like gas molecules) on the various nuclei and fill up the whole detector
- expected neutron fluence is about 3 10¹³ per cm² per year in the innermost part of the detectors (inner tracking systems)
- these fluences are moderated by the presence of Hydrogen:
 - $\sigma(n,H) \sim 2$ barns with elastic collisions

D. Froidevaux, CERN mean free path of neutrons is ~ 5 cm in this energy Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

- the neutrons wreak havoc in semiconductors, independently of the deposited energy, because they modify directly the cristalline structure
 - \rightarrow need radiation-hard electronics (military
 - applications only in the early R&D days)
 - off-the-shelf electronics usually dies out for doses above 100 Gy and fluences above 10¹³ neutrons/cm²
 - rad-hard electronics (especially deep-submicron) can survive up to 10⁵-10⁶ Gy and 10¹⁵ neutrons/cm²
- most organic materials storive easily to 10⁵-10⁶ Gy (beware!)

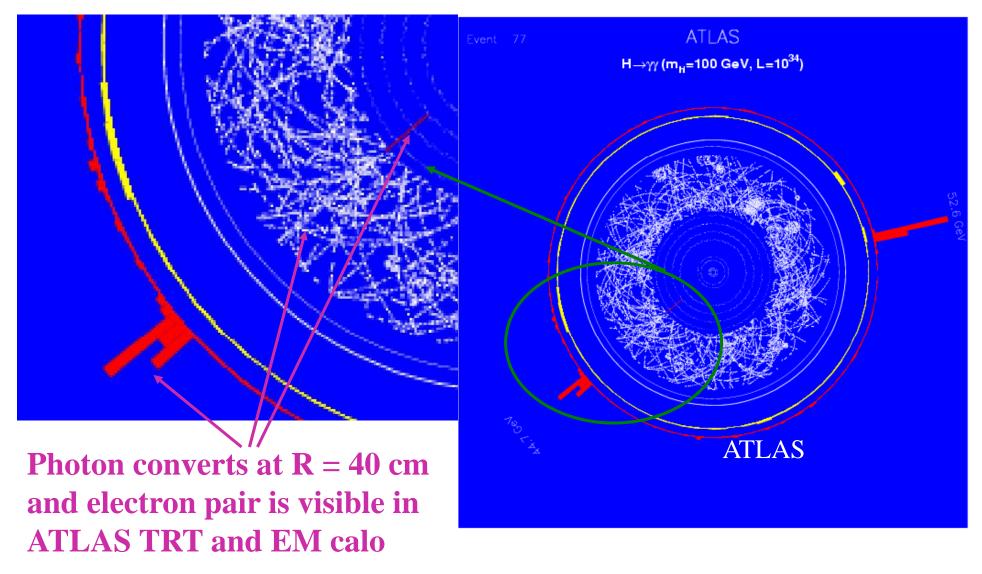
D. Freidevaux, CERN

Pile-up effects at high luminosity

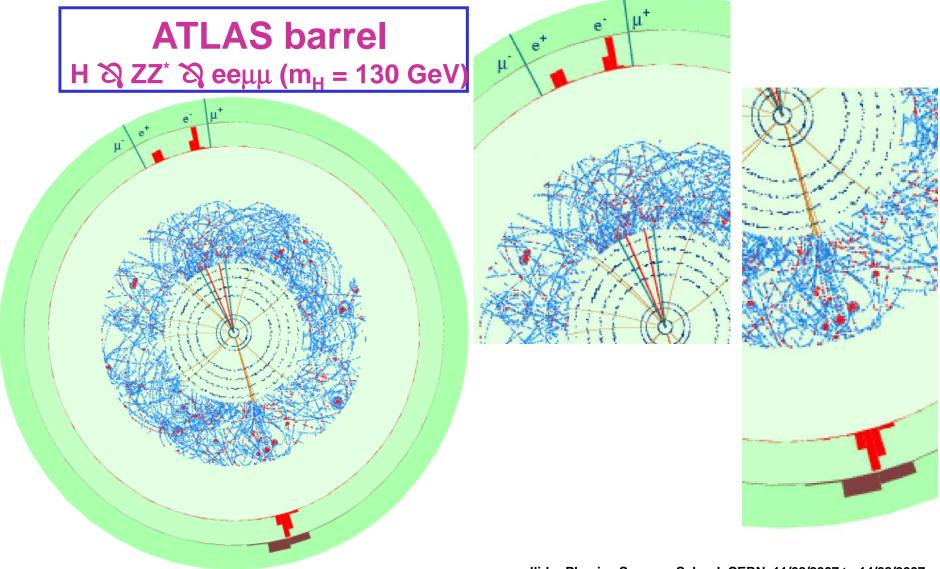
Pile-up is the name given to the impact of the 23 uninteresting (usually) interactions occurring in the same bunch crossing as the hard-scattering process which generally triggers the apparatus

Minimising the impact of pile-up on the detector performance has

been one of the driving requirements on the initial detector design:


• a precise (and if possible fast) detector response minimises

pile-up in time


 \rightarrow very challenging for the electronics in particular

 \rightarrow typical response times achieved are 20-50 ns (!) D. From thighly granular detector minimizes piles up city, system 4/08/2007

Pile-up effects at high luminosity

Pile-up effects at high luminosity

Ilider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Physics at the LHC: the environment Pile-up effects at high luminosity

First consequence of pile-up \rightarrow reconstruction of vertex position along beam for a given bunch crossing of interest

At the LHC, $\sigma_{bunch} = 8 \text{ cm} \rightarrow \text{spread of interaction vertex is 5.6}$

✓ Need to find about 25 vertices along beam for each trigger

 Hard-scattering process usually has higher-momentum tracks and multiplicity, but no clean separation vertex-by-vertex

✓ Simulation results for H → $\gamma\gamma$ at high luminosity: ■ Find on average 5 out of 25 vertices produced D. Froidevaux, CERING H → $\gamma\gamma$ vertex in 272% of little hesic as resch with r. 1.002005 to T4/08/2007

Pile-up effects at high luminosity

Second consequence of pile-up \rightarrow at very high luminosity, risk of producing a given final state from the superposition of two independent events

How likely is this to happen for the final state of a process with cross-section σ_{12} , which could be produced by the overlap of two processes 1 and 2 with cross-sections σ_1 and σ_2 ?

The relationship between σ_{12} and $\sigma_{12}{}^{pile-up} = \sigma_{12}{}^{p}$ depends on the luminosity L and on the spacing Δt between bunches (<n> = L Δt)

Pile-up probability: $P_e = n \sigma_{12}^p / \sigma_{inel}$ and $P_e = n(n-1)P_1P_2/2$, D. Froidevaux, CERN Where $P_{12} = \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{$

Higgs at the LHC: the environment

Pile-up effects at high luminosity

In practice, if L = I . 10^{34} cm⁻² s⁻¹ and Δt = m . 25 ns, one obtains $\sigma_{12}{}^{p} < \sigma_{12}$ if $\sigma_{1} \sigma_{2} / \sigma_{12} < 0.8 \ 10^{10} / I.m$ pb

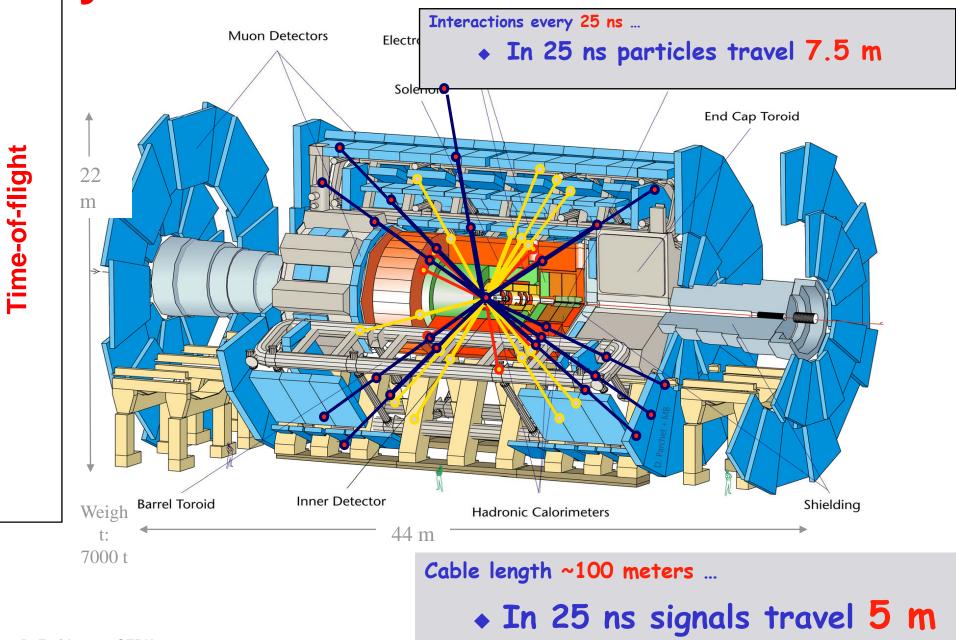
First example: search for ZZ final states at the LHC

 $\sigma_{12} = 10 \text{ pb for ZZ continuum}$ or $\sigma_{12} = 1 \text{ pb for H} \rightarrow \text{ZZ}, m_{\text{H}} = 800 \text{ GeV and}$ $\sigma_1 = \sigma_2 = \sigma_z = 40 \text{ nb} = 40,000 \text{ pb}$

One then obtains $\sigma_1 \sigma_2 / \sigma_{12} = 1.6 \ 10^8$, from which one deduces that

$$\sigma_{ZZ}^{e} = \sigma_{ZZ}$$
 for L $\approx 5 \ 10^{35} \ cm^{-2} \ s^{-1}$

Higgs at the LHC: the environment


Pile-up effects at high luminosity

<u>Second example</u>: search for events with two muons, $p_T^{\mu} > 10$ GeV

$$\begin{split} \sigma_{12} = \sigma_{\mu\mu}(p_T^{\mu} > 10 \text{ GeV}) &\approx 10 \text{ nb} (Z \rightarrow \mu\mu \text{ or } pp \rightarrow bb \rightarrow \mu\mu + X) \\ \sigma_1 = \sigma_2 = \sigma_{\mu}(p_T^{\mu} > 10 \text{ GeV}) &\approx 1000 \text{ nb} \text{ (semileptonic decays of b'} \\ \text{s)} \end{split}$$

One obtains $\sigma_1 \sigma_2 / \sigma_{12} \approx 10^8$, with same result.

<u>Conclusions:</u> in general, pile-up of rare events to mimic even rarer events is negligible.

Physics at the LHC: the challenge

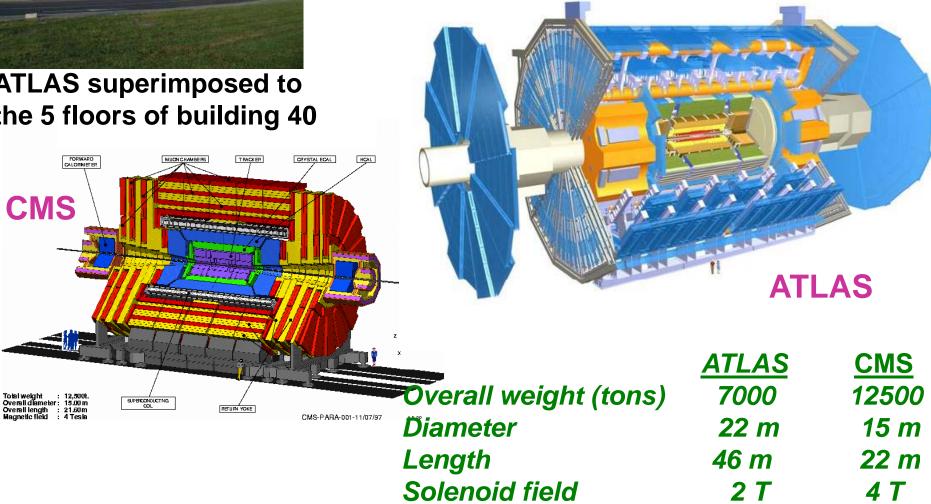
Unprecedented scope and timescales for simulations

Many examples from ATLAS/CMS (and also ALICE/LHCb):

- \approx 30 million volumes simulated in GEANT
- Tbytes (hundreds of millions) of simulated events over 10 years
- Full reconstruction of all benchmark Higgs-boson decays
- Unprecedented amount of material in Inner Detectors leads to significant losses of e.g. charged-pion tracks (up to 20% at 1 GeV) and to significant degradation of EM calo intrinsic performance (mostly for electrons but for photons too)

Main specific design choices of

• Size of ATLAS/CMS directly related to appropriate of particles produced: need to absorb energy of 1 TeV electrons (30 X_0 or 18 cm of Pb), of 1 TeV pions (11 λ or 2 m Fe) and to measure momenta of 1 TeV muons outside calorimeters (BL² is key factor to optimise)


- Choice of magnet system has shaped the experiments in a major way
 - Magnet required to measure momenta and directions of charged particles near vertex (solenoid provides bend in plane transverse to beams)
 - Magnet also required to measure muon momenta (muons are the only charged particles not absorbed in calorimeter absorbers)
 - <u>ATLAS choice</u>: separate magnet systems ("small" 2 T solenoid for tracker and huge toroids with large BL² for muon spectrometer)
 - <u>Pros</u>: large acceptance in polar angle for muons and excellent muon momentum resolution without using inner tracker
 - <u>Cons</u>: very expensive and large-scale toroid magnet system
 - <u>CMS choice</u>: one large 4 T solenoid with instrumented return yoke
 - <u>Pros</u>: excellent momentum resolution using inner tracker and more compact experiment

• <u>Cons</u>: limited performance for stand-alone muon measurements D. Freideway, FERM der) and limited space for Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

ATLAS superimposed to the 5 floors of building 40

How huge are ATLAS and CMS?

Main specific design choices of

• At the LHC, which is esse Ailly Action and precise measurement of leptons is the key to many areas of physics:

- electrons are relatively easy to measure precisely in EM calorimeters but very hard to identify (imagine jet \rightarrow leading π^{-} with $\pi^{-} \rightarrow$ leading π^{0} very early in shower)
- muons in contrast are relatively easy to identify behind calorimeters but very hard to measure accurately at high energies
- \rightarrow This has also shaped to a large extent the global design and technology choices of the two experiments
- EM calorimetry of ATLAS and CMS is based on very different technologies
 - ATLAS uses LAr sampling calorimeter with good energy resolution and excellent lateral and longitudinal segmentation (e/ γ identification)
 - CMS use PbWO₄ scintillating crystals with excellent energy resolution and lateral segmentation but no longitudinal segmentation
 - Broadly speaking, signals from $H \rightarrow \gamma\gamma$ or $H \rightarrow ZZ^* \rightarrow 4e$ should appear as narrow peaks (intrinsically much narrower in CMS) above essentially pure background from same final state (intrinsically

D. Froidevaux, CERN D. Froidevaux, CERN

ATLAS/CMS: from design to reality

	CMS	ATLAS		
Parameter	Solenoid	Solenoid	Barrel toroid	End-cap toroids
Inner diameter	5.9 m	2.4 m	9.4 m	1.7 m
Outer diameter	6.5 m	2.6 m	20.1 m	10.7 m
Axial length	12.9 m	5.3 m	25.3 m	5.0 m
Number of coils	1	1	8	8
Number of turns per coil	2168	1173	120	116
Conductor size (mm ²)	64×22	30×4.25	57×12	41×12
Bending power	$4 \mathrm{T} \cdot \mathrm{m}$	$2 \mathrm{T} \cdot \mathrm{m}$	$3 \mathrm{T} \cdot \mathrm{m}$	6 T · m
Current	19.5 kA	7.6 kA	20.5 kA	20.0 kA
Stored energy	2700 MJ	38 MJ	1080 MJ	206 MJ

Main parameters of the CMS and ATLAS magnet systems TABLE 3

Three magnets have reached their design currents: a major technical milestone! 31 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007