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The Standard Model of particle physics (SM)

Interactions are described by gauge theory with gauge group

SU(3) × SU(2) × U(1)

Strong interactions: QCD

SU(3) 8 massless gluons

Electroweak interactions:

SU(2) × U(1) γmassless

W±, Z massive

These gauge bosons interact with matter fields: quarks and leptons
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Fermion fields of the SM and gauge quantum numbers

SU(3) SU(2) U(1)Y Qe.m. = I3 + Y

Qi
L =


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uL

dL
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
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sL




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 3 2 1
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2
3

− 1
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3
2
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
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
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






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

 1 2 − 1
2

0

−1

ei
R = eR µR τR 1 1 −1 −1

νi
R = νeR νµR ντR 1 1 0 0



Field theory description of the SM (and beyond)

•• A quick review of non-Abelian gauge theories: many formulae

but they will look familiar...

– QED

– Yang-Mills theories

– electroweak interactions

•• Spontaneous symmetry breaking and mass generation: the Higgs boson

•• Theoretical bounds on the mass of the Higgs boson

•• Experimental bounds on the mass of the Higgs boson

•• Extension of the Higgs sector: two Higgs-doublet models and the MSSM
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Abelian gauge theory: QED

We start with a Lagrangian

L0 = ψ̄(x) (i∂/ − m)ψ(x)

invariant under a GLOBAL U(1) symmetry (θ is constant)

ψ(x) → eiqθψ(x)

∂µψ(x) → eiqθ∂µψ(x)

From Noether’s theorem, there is a conserved current:

Jµ(x) = qψ̄(x)γµψ(x) =⇒ ∂µ Jµ(x) = 0

To gauge this theory, we promote the GLOBAL U(1) symmetry to local symmetry:

ψ(x) → eiqθ(x)ψ(x)

∂µψ(x) → eiqθ(x)∂µψ(x) + iqeiqθ(x)ψ(x)∂µθ(x)
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Covariant derivative

Invent a new derivative Dµ such that

ψ(x)→ eiqθ(x)ψ(x) = U(x)ψ(x)

Dµψ(x)→ eiqθ(x)Dµψ(x) = U(x)Dµψ(x)

i.e. both ψ(x) and Dµψ(x) transform the same way under the U(1) local symmetry

Dµ ≡ ∂µ + iqAµ

where Aµ transforms under the local gauge symmetry as

Aµ→ Aµ − ∂µθ(x)

The commutator of covariant derivatives gives the electric and magnetic fields,

i.e. the gauge invariant field strength tensor

Fµν =
1

iq
[Dµ , Dν] =

1

iq
[∂µ + iqAµ , ∂ν + iqAν] = ∂µAν − ∂νAµ
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QED Lagrangian

Two contributions: matter and gauge field contribution

L = Lψ +Lgauge

with

Lψ = ψ̄(x) (iD/ − m)ψ(x)

= ψ̄(x) (i∂/ − m)ψ(x)− qψ̄(x)γµψ(x)Aµ(x)

which describes minimal coupling of the photon field Aµ(x) to the electromagnetic current

Jµ = qψ̄γµψ, and

Lgauge = −1

4
Fµν(x)Fµν(x)

Lgauge cannot contain a term proportional to AµAµ (a mass term for the photon field) since this

term is not gauge invariant under

Aµ→ Aµ − ∂µθ(x)
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Non-Abelian (Yang-Mills) gauge theories

The starting point is a Lagrangian of free or self-interacting fields, that is symmetric under a

GLOBAL symmetry

Lψ(ψ, ∂µψ)

where

ψ =











ψ1

...

ψn











= multiplet of a compact Lie group G

The Lagrangian is symmetric under the transformation

ψ→ψ′ = U(θ)ψ U(θ) = exp(igTaθa) unitary matrix UU† = U†U = 1

If U is unitary, the Ta are hermitian matrices, called group generators (they “generate”

infinitesimal transformation around the unit element of the group)

U(θ) = 1 + igTaθa +O
(

θ2
)

If U is SU(N) matrix (unitary and det U = 1), then there are N2 − 1 traceless, hermitian

generators Ta = λa

2



Lie algebra of the generators

The generators for any representation of G satisfy the Lie Algebra relation

[

Ta, Tb
]

= i f abcTc

where the f abc are called the structure constants of the group G. The starting hypothesis is that L
is invariant under G

Lψ(ψ, ∂µψ) = Lψ(ψ′, ∂µψ′) ψ′ = U(θ)ψ

Gauging the symmetry means to allow the parameters θa to be function of the space-time

coordinates θa →θa(x) so that =⇒ U →U(x)

U(x) = 1 + igTaθa(x) +O
(

θ2
)
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From ∂µ → Dµ

We obtain a LOCAL invariant Lagrangian if we make the substitution

Lψ(ψ, ∂µψ)→Lψ(ψ, Dµψ) Dµ = ∂µ − igAa
µ(x)Ta ≡ ∂µ − igAµ(x)

with the transformation properties

ψ(x) → U(x)ψ(x)

Dµψ(x) → U(x)Dµψ(x) = U(x)DµU−1(x)U(x)ψ(x)

i.e. the covariant derivative must transform as

Dµ→U(x)DµU−1(x) implying Aa
µ→ Aa

µ + ∂µθa(x) + g f abc Ab
µθ

c + · · ·

We can build the kinetic term for the Aa
µ fields from

Fµν = Fa
µνTa =

i

g
[Dµ , Dν] with Fa

µν = ∂µAa
ν − ∂νAa

µ + g f abc Ab
µAc

ν

which transforms homogeneously under a local gauge transformation

Fµν →UFµνU−1 =⇒ Fa
µνFµνa ∼ trFµνFµν → trUFµνU−1 UFµνU−1 = trFµνFµν



Remarks on Yang-Mills theories

Gauge invariant Yang-Mills (YM) Lagrangian for gauge and matter fields

LYM = −1

4
Fa
µνFµνa +Lψ(ψ, Dµψ) with Fa

µν = ∂µAa
ν − ∂νAa

µ + g f abc Ab
µAc

ν

•• Mass terms Aa
µAaµ for the gauge bosons are NOT gauge invariant!

Gauge bosons of (unbroken) YM theories are massless.

•• From the Fa
µνFaµν term in the Lagrangian, we have cubic and quartic gauge boson self

interactions

•• gauge invariance combined with renormalizability (absence of higher powers of fields and

covariant derivatives in L) determines gauge-boson/matter couplings and gauge-boson self

interactions

•• if G =SU(3)c (N = 3) and the fermion are in triplets,

ψ =









ψred

ψblue

ψgreen









=









ψ1

ψ2

ψ3









we have the QCD Lagrangian with N2 − 1 = 8 gauge bosons = gluons.



Electroweak sector

From experimental facts (charged currents couple only to left-handed fermions, existence of a

massless photon and a neutral Z), the gauge group is chosen as SU(2)L× U(1)Y.

ψL ≡ 1

2
(1 − γ5)ψ ψR ≡ 1

2
(1 + γ5)ψ ψ = ψL +ψR

LL ≡ 1

2
(1 −γ5)





νe

e



 =





νeL

eL



 νeR ≡ 1

2
(1 + γ5)νe eR ≡ 1

2
(1 +γ5)e

•• SU(2)L: weak isospin group. Three generators =⇒ three gauge bosons: W1, W2 and W3.

Generators for doublets are Ta = σ a/2, where σ a are the 3 Pauli matrices

For gauge singlets (eR, νR) Ta ≡ 0). All satisfy
[

Ta, Tb
]

= iǫabcTc.

The gauge coupling will be indicated with g.

•• U(1)Y: weak hypercharge Y. One gauge boson B with gauge coupling g′.

One generator (charge) Y(ψ), whose value depends on the fermion field

W3 and B carry identical quantum numbers (T3 = 0, Y = 0) =⇒ they will combine to produce

two neutral gauge bosons: Z and γ.



Gauging the symmetry: fermion Lagrangian

Following the gauge recipe (for one generation of leptons, quarks work the same way)

Lψ = i L̄L D/ LL + i ν̄eR D/ νeR + i ēR D/ eR

where

Dµ = ∂µ − igWµ
i Ti − ig′Yψ Bµ Ti =

σ i

2
or Ti = 0, i = 1, 2, 3

Lψ ≡ Lkin +LCC + LNC

Lkin = i L̄L ∂/ LL + i ν̄eR ∂/νeR + i ēR ∂/ eR

LCC = g W1
µ L̄L γ

µ σ1

2
LL + g W2

µ L̄L γ
µ σ2

2
LL =

g√
2

W+
µ ν̄L γ

µ eL +
g√
2

W−
µ ēL γ

µ νL

LNC =
g

2
W3
µ [ν̄eL γ

µ νeL − ēL γ
µ eL] + g′ Bµ

[

YL (ν̄eL γ
µ νeL + ēL γ

µ eL)

+YνeR
ν̄eR γ

µ νeR + YeR
ēR γ

µ eR

]

with

W±
µ =

1√
2

(

W1
µ ∓ iW2

µ

)



Fermion couplings fixed by renormalizability and gauge quantum numbers

SU(3) SU(2) U(1)Y

Qi
L =





uL

dL









cL

sL









tL

bL



 3 2 1
6

ui
R = uR cR tR 3 1 2

3

di
R = dR sR bR 3 1 − 1

3

Li
L =





νeL

eL









νµL

µL









ντL

τL



 1 2 − 1
2

ei
R = eR µR τR 1 1 −1

νi
R = νeR νµR ντR 1 1 0



EW gauge-boson sector of the SM

Gauge invariance and renormalizability completely determine the

kinetic terms for the gauge bosons

LYM = −1

4
BµνBµν − 1

4
Wa
µνWµν

a

Bµν = ∂µBν − ∂νBµ

Wa
µν = ∂µWa

ν − ∂νWa
µ + gǫabc Wb,µ Wc,ν

The gauge symmetry does NOT allow any mass terms for W± and Z,

i.e. forbidden are terms like

LMass =
1

2
m2

WWa
µWµ

a
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Spontaneous symmetry breaking

Experimentally, the weak bosons are massive. We give mass to the gauge bosons through the

Higgs mechanism: generate mass terms from the kinetic energy term of a scalar douplet field Φ

that undergoes spontaneous symmetry breaking.

Introduce a complex scalar douplet

Φ =





φ+

φ0



 , YΦ =
1

2

LHiggs = (DµΦ)†(DµΦ)− V
(

Φ†Φ
)

Dµ = ∂µ − igWµ
i

σ i

2
− ig′YΦBµ

V
(

Φ†Φ
)

= V0 − µ2Φ†Φ + λ
(

Φ†Φ
)2

, µ2, λ > 0

Notice the “wrong” mass sign.

)
V

(|
Φ+ |

0
Φ| ,

|

|Φ +|

Φ0||

µ <02

µ>02

v/ 2

V
(

Φ†Φ
)

is SU(2)L×U(1)Y symmetric.



Expanding Φ around the minimum

Φ =





φ+

φ0



 =





φ+

1√
2
[v + H(x) + iχ(x)]



 =
1√
2

exp

[

iσiθ
i(x)

v

]





0

v + H(x)





We can rotate away the fields θi(x) by an SU(2)L gauge transformation

Φ(x)→Φ′(x) = U(x)Φ(x) =
1√
2





0

v + H(x)





where U(x) = exp
[

− iσiθ
i(x)
v

]

.

This gauge choice, called unitary gauge, is equivalent to absorbing the Goldstone modes θi(x).

The vacuum state can be chosen to correspond to the vacuum expectation value

Φ0 =
1√
2





0

v





Notice that only a scalar field can have a vacuum expectation value.The VEV of a fermion or

vector field would break Lorentz invariance.
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Consequences for the scalar field H

The scalar potential

V
(

Φ†Φ
)

= λ

(

Φ†Φ− v2

2

)2

expanded around the vacuum state

Φ(x) =
1√
2





0

v + H(x)





becomes

V =
λ

4

(

2vH + H2
)2

=
1

2
(2λv2)H2 + λvH3 +

λ

4
H4

Consequences:

•• the scalar field H gets a mass which is given by the quartic coupling λ

m2
H = 2λv2

•• there is a term of cubic and quartic self-coupling.



Higgs kinetic terms and coupling to W, Z

DµΦ =

(

∂µ − igWµ
i

σ i

2
− ig′

1

2
Bµ
)

1√
2





0

v + H(x)





=
1√
2





0

∂µH



− i

2
√

2



g





Wµ
3 Wµ

1 − iWµ
2

Wµ
1 + iWµ

2 −Wµ
3



+ g′Bµ









0

v + H





=
1√
2









0

∂µH



− i

2
(v + H)





g
(

Wµ
1 − iWµ

2

)

−gWµ
3 + g′Bµ









=
1√
2





0

∂µH



− i

2

(

1 +
H

v

)





gvWµ+

−
√

(g2 + g′2)/2vZµ





(DµΦ)† DµΦ =
1

2
∂µH∂µH +

[

( gv

2

)2
Wµ+W−

µ +
1

2

(

g2 + g′2
)

v2

4
ZµZµ

]

(

1 +
H

v

)2



Consequences

•• The W and Z gauge bosons have acquired masses

m2
W =

g2v2

4
m2

Z =

(

g2 + g′2
)

v2

4
=

m2
W

cos2θW

From the measured value of the Fermi constant GF

GF√
2

=

(

g

2
√

2

)2 1

m2
W

=⇒ v =

√

1√
2GF

≈ 246.22 GeV

•• the photon stays massless

•• HWW and HZZ couplings from 2H/v term (and HHWW and HHZZ couplings from H2/v2

term)

LHVV =
2m2

W

v
W+
µ W−µH +

m2
Z

v
ZµZµH ≡ gmWW+

µ W−µH +
1

2

gmZ

cosθW
ZµZµH

Higgs coupling proportional to mass

•• tree-level HVV (V = vector boson) coupling requires VEV!

Normal scalar couplings give Φ†ΦV or Φ†ΦVV couplings only.



Weak mixing angle

W3
µ and Bµ mix to produce two orthogonal mass eigenstates

massive partner : g W3
µ−g′ Bµ =

√

g2 + g′2 Zµ =
√

g2 + g′2
(

W3
µcosθW − BµsinθW

)

orthogonal, massless : g′ W3
µ + g Bµ =

√

g2 + g′2 Aµ =
√

g2 + g′2
(

W3
µsinθW + BµcosθW

)

with mixing angle fixed by cosθW =
g

√

g2 + g′2
sinθW =

g′
√

g2 + g′2

Write the NC Lagrangian in terms of these mass eigenstates

LNC = ψ̄γµ
(

gT3Wµ
3 + g′YBµ

)

ψ = ψ̄γµ

(

1
√

g2 + g′2
(g2T3 − g′2Y)Zµ +

gg′
√

g2 + g′2
(T3 + Y)Aµ

)

ψ

Must identify positron charge, e, as

e =
gg′

√

g2 + g′2
= g sinθW = g′ cosθW

and the charge of a particle, as a multiple of the positron charge, is given by the

Gell-Mann–Nishijima formula: Q = T3 + Y



The neutral current

It is customary to write the Z coupling to fermions in terms of the electric charge Q and the third

component of isospin (T3 = ±1/2 for left-chiral fermions, 0 for right-chiral fermions)

LNC = ψ̄γµ

(

1
√

g2 + g′2
(g2T3 − g′2Y)Zµ +

gg′
√

g2 + g′2
(T3 + Y)Aµ

)

ψ = eψ̄γµQψAµ + ψ̄γµQZψZµ

QZ is given by

QZ =
1

√

g2 + g′2
(g2T3 − g′2(Q − T3)) =

e

cosθW sinθW

(

T3 − Q sin2θW

)

This procedure works for leptons and also for the quarks (see more later)

Qi
L =





uL

dL



 ,





cL

sL



 ,





tL

bL





ui
R = uR, cR, tR

di
R = dR, sR, bR
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Fermion mass generation

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψ̄ψ = m f (ψ̄RψL + ψ̄LψR)

Generate fermion masses through Yukawa-type interactions terms

LYukawa = −ΓdQ̄LΦdR − Γdd̄RΦ
†QL

−ΓuQ̄LΦcuR + h.c. Φc = iσ2Φ
∗ =

1√
2





v + H(x)

0





−Γe L̄LΦeR + h.c.

−Γν L̄LΦcνR + h.c.

where Q, L are left-handed doublet fields and dR, uR, eR, νR are right-handed SU(2) -singlet

fields.

Notice: neutrino masses can be implemented via Γν term. Since mν ≈ 0 we neglect it in the

following.



Fermion masses for three generations

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψ̄ψ = m f (ψ̄RψL + ψ̄LψR)

Generate fermion masses through Yukawa-type interactions terms

LYukawa = −Γ i j
d Q̄′ i

LΦd
′ j
R − Γ i j∗

d d̄′ i
RΦ

†Q
′ j
L

−Γ i j
u Q̄′ i

LΦcu
′ j
R + h.c. Φc = iσ2Φ

∗ =
1√
2





v + H(x)

0





−Γ i j
e L̄i

LΦe
j
R + h.c.

where Q′, u′ and d′ are quark fields that are generic linear combination of the mass eigenstates u

and d and Γu, Γd and Γe are 3 × 3 complex matrices in generation space, spanned by the indices i

and j.

LYukawa is Lorentz invariant, gauge invariant and renormalizable, and therefore it can (actually it

must) be included in the Lagrangian.
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Expanding around the vacuum state

In the unitary gauge we have

Q̄′ i
L Φ d

′ j
R =

(

ū′ i
L d̄′ i

L

)





0

v+H√
2



 d
′ j
R =

v + H√
2

d̄′ i
L d

′ j
R

Q̄′ i
L Φc u

′ j
R =

(

ū′ i
L d̄′ i

L

)





v+H√
2

0



 u
′ j
R =

v + H√
2

ū′ i
L u

′ j
R

and we obtain

LYukawa = −Γ i j
d

v + H√
2

d̄′ i
L d

′ j
R − Γ i j

u
v + H√

2
ū′ i

L u
′ j
R − Γ i j

e
v + H√

2
ēi

L e
j
R + h.c.

= −
[

M
i j
u ū′ i

L u
′ j
R + M

i j
d d̄′ i

L d
′ j
R + M

i j
e ēi

L e
j
R + h.c.

]

(

1 +
H

v

)

with mass matrices Mi j = Γ i j v√
2
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Diagonalizing M f

It is always possible to diagonalize M
i j
f ( f = u, d, e) with a bi-unitary transformation (U

f

L/R
must

be unitary in order to preserve the form of the kinetic terms in the Lagrangian)

f ′Li =
(

U
f
L

)

i j
fLj

f ′Ri =
(

U
f
R

)

i j
fRj

with U
f
L and U

f
R chosen such that

(

U
f
L

)†
M f U

f
R = diagonal

For example:

(Uu
L)† MuUu

R =









mu 0 0

0 mc 0

0 0 mt









(

Ud
L

)†
MdUd

R =









md 0 0

0 ms 0

0 0 mb








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Mass terms

LYukawa = − ∑
f ′ ,i, j

M
i j
f f̄ ′ i

L f
′ j
R

(

1 +
H

v

)

+ h.c.

= − ∑
f ,i, j

f̄ i
L

[

(

U
f
L

)†
M f U

f
R

]

i j

f
j
R

(

1 +
H

v

)

+ h.c.

= −∑
f

m f

(

f̄L fR + f̄R fL

)

(

1 +
H

v

)

We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling

proportional to the fermion mass.

The Higgs Yukawa couplings are flavor diagonal: no flavor changing Higgs interactions.
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Mass diagonalization and charged current interaction

The charged current interaction is given by

e√
2 sinθW

ū′ i
L /W+ d′ i

L + h.c.

After the mass diagonalization described previously, this term becomes

e√
2 sinθW

ūi
L

[

(Uu
L)† Ud

L

]

i j
/W+d

j
L + h.c.

and we define the Cabibbo-Kobayashi-Maskawa matrix VCKM

VCKM = (Uu
L)† Ud

L

•• VCKM is not diagonal and then it mixes the flavors of the different quarks.

•• It is a unitary matrix and the values of its entries must be determined from experiments.
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Feynman rules for Higgs couplings

H

f

f

−i
m f

v

H

Wµ
+

Wν
-

ig mW gµν

H

Zµ

Zν

i g 1
cosθW

mZ gµν

Within the Standard Model, the Higgs couplings are almost completely constrained. The only

free parameter (not yet measured) is the Higgs mass

m2
H = 2λv2


