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Today:

e Theoretical introduction
Tomorrow:

e Constraints on the Higgs

e Supersymmetric extension
Friday:

e Higgs boson signals at LHC




C The Standard Model of particle physics (SM) )

Interactions are described by gauge theory with gauge group

SUB)  x  SU(2) x Uu(1)

Strong interactions: QCD

SU(3) 8 massless gluons
Electroweak interactions:
SUu(2) x U(1) Y massless

Wi, Z massive

These gauge bosons interact with matter fields: quarks and leptons
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C Fermion fields of the SM and gauge quantum numbers )
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C Field theory description of the SM (and beyond) )

e A quick review of non-Abelian gauge theories: many formulae
but they will look familiar...

- QED
— Yang-Mills theories

— electroweak interactions

e Spontaneous symmetry breaking and mass generation: the Higgs boson

e Theoretical bounds on the mass of the Higgs boson

e Experimental bounds on the mass of the Higgs boson

e Extension of the Higgs sector: two Higgs-doublet models and the MSSM
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C Abelian gauge theory: QED )

We start with a Lagrangian
Lo = P(x) (i — m) (x)
invariant under a GLOBAL U(1) symmetry (6 is constant)

P(x) — ()
0utp(x) —  €199,p(x)

From Noether’s theorem, there is a conserved current:
Ju(x) = qp(x)yup(x) = HJu(x) =0
To gauge this theory, we promote the GLOBAL U(1) symmetry to local symmetry:

Pp(x) —  PPy(x)
0up(x) —  e1Maap(x) + ige® ) p(x)9,0(x)
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C Covariant derivative )

Invent a new derivative D, such that
(x) = Y (x) = U(x)(x)
Dyup(x) — ¢70%) Dup(x) = U(x)Dutp(x)
i.e. both 1(x) and D, (x) transform the same way under the U(1) local symmetry
D, =0, +igA,
where A, transforms under the local gauge symmetry as
Ay — A, —0,0(x)

The commutator of covariant derivatives gives the electric and magnetic fields,
i.e. the gauge invariant field strength tensor

1 1 . .
Firv = E[Dw D,| = ﬁ[au +iqA,, 0y +igAy] = 0,Ay — 0, Ay
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C QED Lagrangian )

Two contributions: matter and gauge field contribution
L =Ly + Loguge
with
Ly = P(x) (i —m)p(x)
= P(x) (i — m) (x) — gP() vuh(x) A% ()

which describes minimal coupling of the photon field A*(x) to the electromagnetic current

J* = qpy*, and
1
Loauge = — 4 Fuv (2) F7 (x)

Egauge cannot contain a term proportional to A, A* (a mass term for the photon field) since this
term is not gauge invariant under

Ay — Ay —0,0(x)
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C Non-Abelian (Yang-Mills) gauge theories )

The starting point is a Lagrangian of free or self-interacting fields, that is symmetric under a
GLOBAL symmetry

Ly (W, au1P>
where U

P = : = multiplet of a compact Lie group G
Y

The Lagrangian is symmetric under the transformation
P — P = U(6) U(6) = exp(igT?0,)  unitary matrix ~UU =U'U =1

If U is unitary, the T* are hermitian matrices, called group generators (they “generate”
infinitesimal transformation around the unit element of the group)

lﬂ@:1+@ﬂ%+0(#)

If U is SU(N) matrix (unitary and det U = 1), then there are N 2 _ 1 traceless, hermitian

a _ A
generators T" = &



C Lie algebra of the generators )

The generators for any representation of G satisty the Lie Algebra relation
[Ta Tb} _ ifabcTc

where the f?°¢ are called the structure constants of the group G. The starting hypothesis is that £
is invariant under G

Lo (,0,0) = Ly (', 0,0) W = U0

Gauging the symmetry means to allow the parameters 6“ to be function of the space-time
coordinates 68 — 0% (x) so that = U — U(x)

U(x) =1+igT0,(x)+ O (92)
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( From o0, — D, )

We obtain a LOCAL invariant Lagrangian if we make the substitution
Ly, 0up) — Ly(1, Dpip) D, =0, —igAf(x)T" =0, —igAu(x)
with the transformation properties
b(x) — Ux)v(x)
Dup(x) — U)Dub(x) = Ux) DU (1)U () ()

i.e. the covariant derivative must transform as

D,—U(x)D,U (x)  implying  A?— A% +0,0%(x) + gf " ALe + - -
We can build the kinetic term for the Aj, fields from
!
8

which transforms homogeneously under a local gauge transformation

Fu = F5,T" = ~[D,, D] with  Fl, =0,A% —0,A +g f”bcAﬂAcv

Fw—UF U = F B ~ttFy F*Y — ttUF, U UF*YU ! = trFy P



C Remarks on Yang-Mills theories )

Gauge invariant Yang-Mills (YM) Lagrangian for gauge and matter fields

1 .
Lym = —7FnB" + Ly(, Dup)  with  Ff, = 0,A% —0yAf +g freAb AS

e Mass terms Af A" for the gauge bosons are NOT gauge invariant!
Gauge bosons of (unbroken) YM theories are massless.

e From the [, F?*Y term in the Lagrangian, we have cubic and quartic gauge boson self
interactions

e gauge invariance combined with renormalizability (absence of higher powers of fields and
covariant derivatives in £) determines gauge-boson/matter couplings and gauge-boson self
interactions

e if G =SU(3). (N = 3) and the fermion are in triplets,

1I)red Y1
Y = 1I)blue - (1))
Y green Y3

we have the QCD Lagrangian with N> — 1 = 8 gauge bosons = gluons.



C Electroweak sector )

From experimental facts (charged currents couple only to left-handed fermions, existence of a
massless photon and a neutral Z), the gauge group is chosen as SU(2); x U(1)y.

1
1—ys5)Y 1/)RE§(1+)/5)11) Y =19 +Yr

1 Vv Vel
wetom (7)) e
e el

e SU(2);: weak isospin group. Three generators = three gauge bosons: W, W? and W?.

(14 v5)Vve er = = (1 +ys5)e

N| —
N| —

Generators for doublets are T* = 0% /2, where ¢” are the 3 Pauli matrices
For gauge singlets (eg, vgr) T% = 0). All satisty [T”, Tb} = iebeTe,
The gauge coupling will be indicated with g.

e U(1)y: weak hypercharge Y. One gauge boson B with gauge coupling g’.

One generator (charge) Y (1), whose value depends on the fermion field

W3 and B carry identical quantum numbers (T3 = 0, Y = 0) = they will combine to produce
two neutral gauge bosons: Z and .



C Gauging the symmetry: fermion Lagrangian )

Following the gauge recipe (for one generation of leptons, quarks work the same way)

,Clp :iELlDLL—I—i'\_/eRD'VeR—Fie_RDeR

where
DH = 9" —igWH T' —ig'Y,, BM Ti:%i or T'=0, i=1,2,3
Ly = Lyin + Lcoc+ Lne
Liin = 1L AL +iVer@Ver +icrPer
Lo = SWELELY“%LL +8WﬁELY“%LL = \%W:VLY“BL + %WQQY”VL
Lnc = % W3 [Ver Y ver, — &L ¥ er] + &' By [YL (VeL V" VoL +EL 7" er)
+Yy, o Ver Y Ver + Yer eR YV eR}
with
Wit = \% (Wi iw?)



C Fermion couplings fixed by renormalizability and gauge quantum numbers )
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( EW gauge-boson sector of the SM )

Gauge invariance and renormalizability completely determine the
kinetic terms for the gauge bosons

1 1

BYY = QHBY —9YBH
Wi, = 0,W¢—0,Wi+g ™ Wy, We v

The gauge symmetry does NOT allow any mass terms for W* and Z,
i.e. forbidden are terms like

1
L Mass = > mIZ/v Wﬁ Wy
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C Spontaneous symmetry breaking )

Experimentally, the weak bosons are massive. We give mass to the gauge bosons through the
Higgs mechanism: generate mass terms from the kinetic energy term of a scalar douplet field ©
that undergoes spontaneous symmetry breaking.

Introduce a complex scalar douplet

_|_ ::
1 |
O — qbo , Yo = 5 oy
¢ 5
5
Liges = (Du®@)T(DH®) -V (cDTcD) 5
) o Il S ;
DY = oM —igW/'Z —igYoB / /H:O
: 2 o) 2 1
1% (cb cD) — V- 20t 4+ A (cp cp) , 12,1 >0 /N

Notice the “wrong” mass sign.

V (@T®) is SU(2), xU(1)y symmetric.



Expanding ® around the minimum

[ 9T _ ¢" :Lex i0;0' (x) 0
v ( ¢V ) ( %[U+H(x)+ix(x)] ) V2 p[ v ] <U+H(x) )

We can rotate away the fields 0'(x) by an SU(2); gauge transformation

O(x)— @' (x) = U(x)®(x) = % . ;(x)

0

where U(x) = exp [—

This gauge choice, called unitary gauge, is equivalent to absorbing the Goldstone modes & (x).

The vacuum state can be chosen to correspond to the vacuum expectation value

5

Notice that only a scalar field can have a vacuum expectation value.The VEV of a fermion or
vector field would break Lorentz invariance.

Dieter Zeppenfeld EW and Higgs

16



C Consequences for the scalar field H

The scalar potential
7\ 2
v(ofo) =2 (cDTcD = U—)

expanded around the vacuum state

1 0
*M =7 ( v+ H(x) )

becomes

A
(2A0v*)H? + AvH® + —H*

V =
4

2 1
<ZUH+H2) = 3

W >

Consequences:

e the scalar field H gets a mass which is given by the quartic coupling A
m%{ = 2A0?

e there is a term of cubic and quartic self-coupling.



DH®

(D*®)' D, ® = Z0"Hd, H +

C Higgs kinetic terms and coupling to W, Z )

i 1 1 0
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C Consequences )

The W and Z gauge bosons have acquired masses

2 _ g0 o (&+g) P myy
w 4 z 4 cos? Oy
From the measured value of the Fermi constant Gr
Gr ( q )2 1 1
F — v = ~ 246.22 GeV
V2 2V/2) m3, V2Gr

the photon stays massless

HWW and HZZ couplings from 2H /v term (and HHWW and HHZZ couplings from H? /v?
term)
2 1 gmy

2m? m
Lyyy = TWWJW—“H + 7ZZ“Z”H = gmyW,FW™HH + 3 cos b

Z*Z,H

Higgs coupling proportional to mass

tree-level HV'V (V' = vector boson) coupling requires VEV!
Normal scalar couplings give ®T®V or ®T®VV couplings only.



C Weak mixing angle )

WEL and B,, mix to produce two orthogonal mass eigenstates

massive partner:  gW,—¢'B, = /g2 +¢?27Z,= /g% +g" (Wﬁcos O — Busin GW)
orthogonal, massless : g Wﬁ +9¢B, = /g2+ g2 A=/ +g" (Wﬁsin Ow + Bcos QW)

/

8

with mixing angle fixed by cosby = sin Oy =

8

Write the NC Lagrangian in terms of these mass eigenstates

_ _ 1 /
Lnc = Pyu (§TsWy +&'YBH) i = Py, ( o2+ ¢72 (8T = §2Y) 2" + S5 (Ts + Y)Au> v

Must identify positron charge, ¢, as

/
e= 58 = ¢sinOy = ¢’ cos Oy

and the charge of a particle, as a multiple of the positron charge, is given by the
Gell-Mann-Nishijima formula: Q = T3 + Y




C The neutral current )

It is customary to write the Z coupling to fermions in terms of the electric charge Q and the third
component of isospin (T3 = +1/2 for left-chiral fermions, 0 for right-chiral fermions)

_ 1 ’ 7 7
Lnc = Vyu ( o2+ g7 (85 — g"Y)ZH + o = (T3 + Y)A“> Y = ey QY A" + Py QzypZ*

gZ +g/
Qyz is given by
_ 1 20 200y _ _ € O ein2
Qz = == (' = §%(Q - 1) = g (T~ Qsin® ow)

This procedure works for leptons and also for the quarks (see more later)
Qi = ur, Cr tr, uly = ug, cg, tr
dr SL, br diy = dg,sr, br
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C Fermion mass generation )

A direct mass term is not invariant under SU(2);, or U(1)y gauge transformation
mepp = me (PrYr + PYrpr)

Generate fermion masses through Yukawa-type interactions terms

Lyikawa = —T4Qr@dr— Tydr®@'Qp
_ 1 v+ H(x)
—T1,Q; D ug + h.c. O, =i d" = —
u C c \/E 0
—FeI:LCDeR + h.c.

where Q, L are left-handed doublet fields and dg, ug, eg, vg are right-handed SU(2) -singlet
fields.

Notice: neutrino masses can be implemented via I, term. Since m, ~ 0 we neglect it in the
following.



C Fermion masses for three generations )

A direct mass term is not invariant under SU(2); or U(1)y gauge transformation
menp = myg (Yrr + Pripr)

Generate fermion masses through Yukawa-type interactions terms

EYukawa — _rZi] Q_/qu)d%] o F;]*d_g(DTQ/L]
—F;]Q’LlCDCuI{ + h.c. O, =i 0" = ﬁ 0

—F;jI:iLCDeé +h.c.

where Q’, 1/ and d’ are quark fields that are generic linear combination of the mass eigenstates u

and d and T}, I; and T, are 3 X 3 complex matrices in generation space, spanned by the indices i
and j.

Lyvukawa 18 Lorentz invariant, gauge invariant and renormalizable, and therefore it can (actually it
must) be included in the Lagrangian.
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C Expanding around the vacuum state )

In the unitary gauge we have

y , S 0 ; H
gied) = (af @) ., dé{:”% 7 d
V2
v+H
_ . . . . . H . .
Q/LZ(Dcu;{] — (a/Ll d/Lz) \6§ ugzv\‘;i L_t/LZMg{]
and we obtain
v+H - i iio+H _,; i zU—I—H :
L - T did) - altu] — 1 e L h.e
Yukawa d \/E L "R u \/z L "R e \/E R

j H
- e sl ] (14 5)

with mass matrices MY = I'ji -2
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( Diagonalizing My )

It is always possible to diagonalize M}] (f = u,d, e) with a bi-unitary transformation (U

be unitary in order to preserve the form of the kinetic terms in the Lagrangian)

S f .
fio = (uf), fi
A f .
fRz (UR) ij fR]
with U{ and U{; chosen such that
(LI{)T MfU£ = diagonal

For example:

m,; O 0 T
Uy Ml =| 0 m 0 (uf) mauf
0 0 my

mgy 0 0
0 ms O
0 0 my

f
L/R

must
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C Mass terms )

o H
Lyukawa = — Z M}] il 1/{] (1—|—;)—|—h.C.
fh
, t H
- -3 i[( )Muf] fR< >+h.c.
fiij

= - ;’”’”‘f (fLfr + frfL) (1 + %)

We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling
proportional to the fermion mass.

The Higgs Yukawa couplings are flavor diagonal: no flavor changing Higgs interactions.
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C Mass diagonalization and charged current interaction )

The charged current interaction is given by
e
V2 sin Oy

After the mass diagonalization described previously, this term becomes

' W dy + h.c.

e i uNT 77d + 4]
up |((Up)' Uy| WTd; +h.c.
oo (U Ug] Wt
and we define the Cabibbo-Kobayashi-Maskawa matrix Vg

Verm = (U Ud

e Vi is not diagonal and then it mixes the flavors of the different quarks.

e Itis a unitary matrix and the values of its entries must be determined from experiments.
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( Feynman rules for Higgs couplings )

18 My Suv

: 1
tg cos Oy mz &uv

Within the Standard Model, the Higgs couplings are almost completely constrained. The only
free parameter (not yet measured) is the Higgs mass

m%i = 2A0?



