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Yesterday:

•• Theoretical introduction

Today:

•• Constraints on the Higgs

•• Supersymmetric extension

Tomorrow:

•• Higgs boson signals at LHC



Constraints on the Higgs Boson Mass

We had found that the Higgs boson mass is related to the value of the quartic Higgs coupling λ:

L = (DµΦ)†(DµΦ)− λ

(

Φ†Φ − v2

2

)2

leads to

m2
H = 2λv2

So far we have measured neither mH nor λ =⇒ no direct experimental information

This raises several questions

•• Can we get rid of the Higgs by setting mh = ∞ and λ = ∞? Can we eliminate the Higgs

from the SM?

•• Does consistency of the SM as a renormalizable field theory provide constraints?

•• Is there indirect information on mH, e.g. from precision observables and loop effects?
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The perturbative unitary bound

A very severe constraint on the Higgs boson mass comes from unitarity of the scattering

amplitude.

unitarity ⇐⇒ QM probability < 1

Scattering probability bounded from above!

Considering the elastic scattering of longitudinally polarized Z bosons

ZLZL → ZLZL

M = −m2
H

v2

[

s

s − m2
H

+
t

t − m2
H

+
u

u − m2
H

]

in the s ≫ m2
Z limit

where s, t and u are the usual Mandelstam variables.

The perturbative unitary bound on the J = 0 partial amplitude takes the form

|M0|2 =

[

3

16π

m2
H

v2

]2

< 1 =⇒ mH <

√

16π

3
v ≈ 1 TeV
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Unitarity of WW scattering

Partial wave amplitudes are bounded by a constant

=⇒ M ∼ s
m2

W

violates unitarity at sufficiently high energy

Without the Higgs contribution, the J = 0 partial wave violates unitarity for
√

s > 1.2 TeV

Destructive interference between Higgs exchange amplitudes and gauge boson scattering

amplitudes works for s > m2
H only

=⇒ mH
<∼ 1 TeV

or new physics at the TeV scale

or both
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Running of λ

The one-loop renormalization group equation (RGE) for λ(µ) is

dλ(µ)

d logµ2
=

1

16π2

[

12λ2 +
3

8
g4 +

3

16

(

g2 + g′2
)2

−3h4
t − 3λg2 − 3

2
λ
(

g2 + g′2
)

+ 6λh2
t

]

where

mt =
htv√

2
and m2

H = 2λv2

This equation must be solved together with the one-loop RGEs for the gauge and Yukawa

couplings, which, in the Standard Model, are given by

dg(µ)

d logµ2
=

1

32π2

(

− 19

6
g3

)

dg′(µ)

d logµ2
=

1

32π2

41

6
g′3

dgs(µ)

d logµ2
=

1

32π2

(

−7g3
s

)

=
1

32π2

(

−(11− 2

3
n f )g3

s

)

dht(µ)

d logµ2
=

1

32π2

[

9

2
h3

t −
(

8g2
s +

9

4
g2 +

17

12
g′2
)

ht

]

here gs is the strong interaction coupling constant, and the MS scheme is adopted.



Solutions for λ(µ)

Solving this system of coupled equations with the initial condition

λ (mH) =
m2

H

2v2



Lower bound for mH : vacuum stability

It can be shown that the requirement that the Higgs potential be bounded from below, even after

the inclusion of radiative corrections, is fulfilled if λ(µ) stays positive, at least up to a certain

scale µ ≈ Λ, the maximum energy scale at which the theory can be considered reliable.

✗ This limit is extremely sensitive to the top-quark mass.

✓ The stability lower bound can be relaxed by allowing metastability
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Upper bound for mH : triviality bound

For large values of the Higgs boson mass, the coupling

λ(µ) grows with increasing µ, and eventually leaves the

perturbative domain (λ <∼ 1): the solution has a singular-

ity in µ , known as the Landau pole.

For the theory to make sense up to a scale Λ, we must ask

λ(µ) <∼ 1 (or something similar), for µ ≤ Λ.

Neglecting gauge and Yukawa coupling, we have

λ(µ2) =
λ(m2

H)

1 − 3
4π2 λ(m2

H) log µ2

m2
H

singular when µ2 ≈ Λ2
L ≡ m2

H exp

[

4π2

3λ
(

m2
H

)

]

For any value of λ
(

m2
H

)

the theory has

an upper scale Λ of validity.

Λ→∞ for pure scalar theory possible

only if λ(µ) ≡ 0, i.e. no scalar self-

coupling =⇒ free or trivial theory



Higgs boson mass bounds

Renormalization group constraints on the Higgs boson mass, mH =
√

2λv

Riesselmann, hep-ph/9711456

Notice the small window

140 GeV < mH < 180 GeV, where

the theory is valid up to the Planck

scale MPlanck = (h̄c/GNewton)1/2 ≈
1.22 × 1019 GeV.

For a cutoff scale of Λ > 1000 TeV

the Higgs boson should lie in the mass

window 110 GeV < mH < 300 GeV
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Constraints from precision data

α =
1

4π

g2g′2

g2 + g′2
=

1

137.03599976(50)

GF =
1√
2v2

= 1.16637(1)× 10−5 GeV−2

mZ =
1

2

√

g2 + g′2 v = 91.1875(21) GeV ,

where the uncertainty is given in parentheses. The value of α is extracted from low-energy

experiments, GF is extracted from the muon lifetime, and mZ is measured from e+e− annihilation

near the Z mass.

We can express mW as

m2
W =

1

sin2 θW

πα√
2GF

where

sin2 θW = 1 − m2
W

m2
Z
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Clues to the Higgs boson mass

From the sensitivity of electroweak observables to the mass of the top, we are able to measure its

mass, even without directly producing it

W W

t

b

Z Z

t

t

These quantum corrections alter the link between W and Z boson masses

m2
W =

1

sin2 θW (1 − ∆ρ)

πα√
2GF

∆ρ(top) ≈ − 3GF

8π2
√

2

1

tan2 θW
m2

t

The strong dependence on m2
t accounts for the precision of the top-quark mass estimates derived

from electroweak observables.
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The Higgs boson quantum corrections are typically smaller than the top-quark corrections, and

exhibit a more subtle dependence on mH than the m2
t dependence of the top-quark corrections.

H

+

H

∆ρ(Higgs) =
11GFm2

Z cos2 θW

24
√

2π2
log

(

m2
H

m2
W

)

Since mZ has been determined at LEP to 23 ppm, it is interesting to examine the dependence of

mW upon mt and mH .

Indirect measurements of mW and mt (solid line)

Direct measurements of mW and mt (dotted line)

mt = 170.9 ± 1.8 GeV

mW = 80.398± 0.025 GeV

both shown as one-standard-deviation regions.
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The indirect and direct determinations are in reasonable agreement and both favor a light Higgs

boson, within the framework of the SM.



Summary of EW precision data

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Better estimates of the SM Higgs boson mass

are obtained by combining all available data:

Summary of electroweak precision measure-

ments (status winter 2007) as given on LEP-

EWWG page:

http://lepewwg.web.cern.ch/LEPEWWG/



SM Higgs mass fit to EW precision data

mH = 76+33
−24 GeV

Including theory uncertainty

mH < 144 GeV (95% CL)

Does not include

Direct search limit from LEP

mH > 114 GeV (95% CL)

Renormalize probability for

mH > 114 GeV to 100%:

mH < 182 GeV (95% CL)
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The MSSM Higgs sector

The SM uses the conjugate field Φc = iσ2Φ
∗ to generate down quark and lepton masses. In

supersymmetric models this must be an independent field

LYukawa = −ΓdQ̄LΦ1dR − Γe L̄LΦ1eR + h.c.

−ΓuQ̄LΦ2uR + h.c.

Two complex Higgs doublet fields Φ1 and Φ2 receive mass and VEVs v1, v2 from generalized

Higgs potential. Mass eigenstates constructed out of these 8 real fields are

Neutral sector:

2 CP even Higgs bosons: h and H

1 CP odd Higgs boson: A

1 Goldstone boson: χ0

Charged sector:

charged Higgs bosons: H±

charged Goldstone boson: χ±
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Higgs mixing and MSSM parameters

The Higgs potential leads to general mixing of the 2 doublet fields

Φ1 =
1√
2





√
2[H− sin β − χ− cos β]

v1 + [H cosα − h sinα] + i[A sin β + χ0 cos β]



→ 1√
2





√
2H− sinβ

v1 +ϕ1 + iA sin β





Φ2 =
1√
2





v2 + [H sinα + h cosα] + i[A cos β − χ0 sin β]
√

2[H+ cos β + χ+ sinβ]



→ 1√
2





v2 +ϕ2 + iA cos β
√

2H+ cos β





The angle β is determined by the VEVs:

v1 = v cos β , v2 = v sinβ , =⇒ v2

v1
= tanβ

The mixing angle α between the 2 CP even scalars and the masses are determined by

tanβ , mA , v =
√

v2
1 + v2

2 = 246 GeV
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SUSY Higgs mass relations

Higgs potential in the MSSM produces distinct mass relations at tree level

m2
h, m2

H =
1

2

[

m2
A + m2

Z ±
√

(

m2
A + m2

Z

)2 − 4m2
Am2

Z cos2 2β

]

mH± =
√

m2
A + m2

W > mW

Pseudoscalar mass mA sets scale for H and H± mass, but h must be light

m2
h =

2m2
Am2

Z cos2 2β

m2
A + m2

Z +
√

(

m2
A + m2

Z

)2 − 4m2
Am2

Z cos2 2β

< m2
Z cos2 2β

because quartic coupling is proportional to g2, g′2

Problem: mh < mZ is ruled out by LEP data! =⇒ need to include radiative corrections

Behaviour for mA ≫ mZ:

m±
H ≈ mA ≈ mH , mh = mZ| cos 2β|

mh is largest for tanβ→0, ∞.

Later: h has SM couplings in mA→∞ limit (decoupling limit)









Lightest Higgs mass mh
<∼ 135 GeV since quartic coupling is given by gauge couplings,

Vquartic = (g2 + g
′2)/8

(

Φ
†
1Φ1 − Φ

†
2Φ2

)2
+ g2/2 Φ

†
1Φ2Φ

†
2Φ1



Higgs mixing and MSSM parameters

The Higgs potential leads to general mixing of the 2 doublet fields

Φ1 =
1√
2





√
2[H− sin β − χ− cos β]

v1 + [H cosα − h sinα] + i[A sin β + χ0 cos β]



→ 1√
2





√
2H− sinβ

v1 +ϕ1 + iA sin β





Φ2 =
1√
2





v2 + [H sinα + h cosα] + i[A cos β − χ0 sin β]
√

2[H+ cos β + χ+ sinβ]



→ 1√
2





v2 +ϕ2 + iA cos β
√

2H+ cos β





The angle β is determined by the VEVs:

v1 = v cos β , v2 = v sinβ , =⇒ v2

v1
= tanβ

The mixing angle α between the 2 CP even scalars and the masses are determined by

tanβ , mA , v =
√

v2
1 + v2

2 = 246 GeV
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Coupling to gauge bosons

L = (DµΦ1)
† DµΦ1 + (DµΦ2)

† DµΦ2

=
1

2
|∂µφ1|2 +

1

2
|∂µφ2|2 +

(

g2
Z

8
ZµZµ +

g2

4
W+

µ W−µ

)

[

(v1 +ϕ1)
2 + (v2 +ϕ2)

2
]

The v2
1 + v2

2 = v2 term gives same masses to W, Z as in the SM

m2
W =

g2v2

4
m2

Z =

(

g2 + g′2
)

v2

4
=

m2
W

cos2 θW

The couplings to the gauge bosons arise from

2v1ϕ1 + 2v2ϕ2 = 2v [ H cos(β −α) + h sin(β −α) ]

=⇒ extra coupling factors for hVV and HVV couplings as compared to SM

hVV ∼ sin(β −α) HVV ∼ cos(β −α)
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Coupling to fermions

LYuk. = −Γbb̄LΦ0
1bR − Γt t̄LΦ0

2uR + h.c.

= −Γbb̄L
v1 + H cosα − h sinα + iA sinβ√

2
bR − Γt t̄L

v2 + H sinα + h cosα + iA cos β√
2

tR + h.c.

The v1, v2 terms are the fermion masses

mb =
Γbv1√

2
mt =

Γtv2√
2

=⇒ Γb√
2

=
mb

v cosβ

Γt√
2

=
mt

v sinβ

Expressed in terms of masses the Yukawa Lagrangian is

LYuk. = −mb

v
b̄

(

v + H
cosα

cos β
− h

sinα

cos β
− iγ5 A tan β

)

b − mt

v
t̄

(

v + H
sinα

sinβ
+ h

cosα

sin β
− iγ5 A cot β

)

t

=⇒ coupling factors compared to SM h f f coupling −i m f /v
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