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Abstract

This is a written version of a series of lectures aimed at young postdocs in experimental HEP, as

well as senior students in HEP phenomenology. We begin with an overview of flavor physics and

its implications for new physics. We emphasize the “new physics flavor puzzle”. Then, we give

three specific examples of flavor measurements and the lessons that have been (or can be) drawn

from them: (i) Charm physics: lessons for supersymmetry from the upper bound on ∆mD. (ii)

Bottom physics: model independent lessons on the KM mechanism and on new physics in B0−B0

mixing from SψKS
. (iii) Top physics and beyond: testing minimal flavor violation at the LHC.
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I. INTRODUCTION

The Standard Model fermions appear in three generations. Flavor physics describes

interactions that distinguish between the fermion generations.

The fermions experience two types of interactions: gauge interactions, where two fermions

couple to a gauge boson, and Yukawa interactions, where two fermions couple to a scalar.

Within the Standard Model, there are twelve gauge bosons, related to the gauge symmetry

GSM = SU(3)C × SU(2)L × U(1)Y, (1)

and a single Higgs scalar, related to the spontaneous symmetry breaking

GSM → SU(3)C × U(1)EM. (2)

In the interaction basis, gauge interactions are diagonal and universal, namely described

by a single gauge coupling for each factor in GSM: g3, g2, and gY . By definition, the inter-

action eigenstates have no gauge couplings between fermions of different generations. The

Yukawa interactions are, however, quite complicated in the interaction basis. In particular,

there are Yukawa couplings that involve fermions of different generations and, consequently,

the interaction eigenstates do not have well-defined masses. Flavor physics here refers to

the part of the Standard Model that depends on the Yukawa couplings.

In the mass basis, Yukawa interactions are diagonal (in the Standard Model, its single-

Higgs extensions and even with extended Higgs sector subject to natural flavor conservation),

but not universal. The mass eigenstates have, by definition, well-defined masses. The

interactions related to spontaneously broken symmetries are, however, quite complicated

in the mass basis. In particular, the interactions of the charged weak force carriers W±

are not diagonal, that is, they mix quarks of different generations. (In extensions of the

Standard Model, with left-handed SU(2)L-singlet left-handed quarks, or SU(2)L-doublet

right-handed quarks, the Z-couplings can also involve mixing.) Flavor physics here refers to

fermion masses and mixings.

Why is flavor physics interesting?

• Flavor physics and the physics of CP violation can discover new physics or probe it

before it is directly observed in experiments. Here are some examples from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;
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– The size of ∆mK led to a successful prediction of the charm mass;

– The size of ∆mB led to a successful prediction of the top mass;

– The measurement of εK led to predicting the third generation.

• CP violation is closely related to flavor physics. Within the Standard Model, there is

a single CP violating parameter, the Kobayashi-Maskawa phase δKM [1]. Baryogenesis

tells us, however, that there must exist new sources of CP violation. Measurements of

CP violation in flavor changing processes might provide evidence for such sources.

• The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply

that there exists new physics at, or below, the TeV scale. If such new physics had a

generic flavor structure, it would contribute to flavor changing neutral current (FCNC)

processes orders of magnitude above the observed rates. The question of why this does

not happen constitutes the new physics flavor puzzle.

• Most of the charged fermion flavor parameters are small and hierarchical. The Stan-

dard Model does not provide any explanation of these features. This is the Standard

Model flavor puzzle.

The puzzle became even deeper when neutrino masses and mixings have been mea-

sured. So far, neither smallness nor hierarchy in these parameters have been estab-

lished.

In these lectures, we will not discuss that Standard Model flavor puzzle. We will, however,

discuss three specific measurements that relate to the other points above:

• We show how measurements of D0 − D0 mixing allow us to explore supersymmetry

and, in particular, give evidence that if there are squarks below the TeV scale, they

must be quasi-degenerate.

• We explain how the measurement of the CP asymmetry in B → J/ψKS decays gives

evidence that the KM mechanism is the dominant source of the observed CP violation,

and quantitatively constrains the amount of new physics in B0 −B0 mixing.

• We present the idea of minimal flavor violation as a solution to the new physics flavor

problem, and argue that the ATLAS and CMS experiments may be able to test this

solution.
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II. FLAVOR IN THE STANDARD MODEL

A model of elementary particles and their interactions is defined by three ingredients:

(i) The symmetries of the Lagrangian; (ii) The pattern of spontaneous symmetry breaking;

(iii) The representations of fermions and scalars. The Standard Model (SM) is defined as

follows. (i) The gauge symmetry is GSM of Eq. (1); (ii) Its spontaneous symmetry breaking

is described by Eq. (2); (iii) There are three fermion generations, each consisting of five

representations of GSM:

QI
Li(3, 2)+1/6, U I

Ri(3, 1)+2/3, DI
Ri(3, 1)−1/3, LILi(1, 2)−1/2, EI

Ri(1, 1)−1. (3)

Our notations mean that, for example, left-handed quarks, QI
L, are triplets of SU(3)C,

doublets of SU(2)L and carry hypercharge Y = +1/6. The super-index I denotes interaction

eigenstates. The sub-index i = 1, 2, 3 is the flavor (or generation) index. There is a single

scalar representation,

φ(1, 2)+1/2 =

(

φ+

φ0

)

. (4)

The scalar φ0 assumes a VEV,

〈φ0〉 =
v√
2
, (5)

leading to (2).

The Standard Model Lagrangian, LSM, is the most general renormalizable Lagrangian

that is consistent with the gauge symmetry (1), the particle content (3,4) and the pattern

of spontaneous symmetry breaking (2,5). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (6)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace the

derivative with a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (7)

Here Gµ
a are the eight gluon fields, W µ

b the three weak interaction bosons and Bµ the single

hypercharge boson. The La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2
λa

for triplets, 0 for singlets), the Tb’s are SU(2)L generators (the 2 × 2 Pauli matrices 1
2
τb for
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doublets, 0 for singlets), and the Y ’s are the U(1)Y charges. For example, for the left-handed

quarks QI
L, we have

Lkinetic(QL) = iQI
Liγµ

(

∂µ +
i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)

QI
Li. (8)

These parts of the interaction Lagrangian are always flavor-universal and CP conserving.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2. (9)

For the Standard Model scalar sector, where there is a single doublet, this part of the

Lagrangian is also CP conserving.

The quark Yukawa interactions are given by

−Lquarks
Yukawa = Y d

ijQ
I
LiφD

I
Rj + Y u

ijQ
I
Liφ̃U

I
Rj + h.c.. (10)

This part of the Lagrangian is, in general, flavor-dependent (that is, Y f 6∝ 1) and CP

violating.

How many independent parameters are there in Lquarks
Yukawa? Each of the two Yukawa ma-

trices Y q (q = u, d) is 3× 3 and complex. Consequently, there are 18 real and 18 imaginary

parameters in these matrices. Not all of them are, however, physical. One can think of the

quark Yukawa couplings as spurions that break a global symmetry,

U(3)Q × U(3)D × U(3)U → U(1)B. (11)

This means that there is freedom to remove 9 real and 17 imaginary parameters (the number

of parameters in three 3×3 unitary matrices minus the phase related to U(1)B). We conclude

that there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis,

we will be able to identify the nine real parameters as six quark masses and three mixing

angles, while the single phase is δKM.

Upon the replacement Re(φ0) → v+H0
√

2
[see Eq. (5)], the Yukawa interactions (10) give

rise to mass terms:

−LqM = (Md)ijDI
LiD

I
Rj + (Mu)ijU I

LiU
I
Rj + h.c., (12)

where

Mq =
v√
2
Y q, (13)
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and we decomposed the SU(2)L quark doublets into their components:

QI
Li =

(

U I
Li

DI
Li

)

. (14)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always

find unitary matrices VqL and VqR such that

VqLMqV
†
qR = Mdiag

q (q = u, d), (15)

with Mdiag
q diagonal and real. The quark mass eigenstates are then identified as

qLi = (VqL)ijq
I
Lj, qRi = (VqR)ijq

I
Rj (q = u, d). (16)

The charged current interactions for quarks [that is the interactions of the charged SU(2)L

gauge bosons W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ)], which in the interaction basis are described by (8),

have a complicated form in the mass basis:

−LqW± =
g√
2
ULiγ

µVijDLjW
+
µ + h.c.. (17)

where V is a unitary 3 × 3 matrix,

V = VuLV
†
dL, (V V † = V †V = 1). (18)

V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks [1, 2]. As a result

of the fact that V is not diagonal, the W± gauge bosons couple to quark mass eigenstates of

different generations. Within the Standard Model, this is the only source of flavor changing

quark interactions.

A. The CKM matrix

The form of V is not unique:

(i) There is freedom in defining V in that we can permute between the various generations.

This freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b). The elements of V are written as follows:

V =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











. (19)
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(ii) There is further freedom in the phase structure of V . This means that the number

of physical parameters in V is smaller than the number of parameters in a general unitary

3 × 3 matrix which is nine (three real angles and six phases). Let us define Pq (q = u, d) to

be diagonal unitary (phase) matrices. Then, if instead of using VqL and VqR for the rotation

(16) to the mass basis we use ṼqL and ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still

maintain a legitimate mass basis since Mdiag
q remains unchanged by such transformations.

However, V does change:

V → PuV P
∗
d . (20)

This freedom is fixed by demanding that V has the minimal number of phases. In the three

generation case V has a single phase. (There are five phase differences between the elements

of Pu and Pd and, therefore, five of the six phases in the CKM matrix can be removed.)

This is the Kobayashi-Maskawa phase δKM which is the single source of CP violation in the

quark sector of the Standard Model [1].

The fact that V is unitary and depends on only four independent physical parameters

can be made manifest by choosing a specific parametrization. The standard choice is [3]

V =











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











, (21)

where cij ≡ cos θij and sij ≡ sin θij . The θij ’s are the three real mixing parameters while

δ is the Kobayashi-Maskawa phase. It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1.

It is convenient to choose an approximate expression where this hierarchy is manifest. This

is the Wolfenstein parametrization, where the four mixing parameters are (λ,A, ρ, η) with

λ = |Vus| = 0.23 playing the role of an expansion parameter and η representing the CP

violating phase [4, 5]:

V =











1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ + 1
2
A2λ5[1 − 2(ρ+ iη)] 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1 − (1 − 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1 − 2(ρ+ iη)] 1 − 1

2
A2λ4











. (22)

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix

leads to various relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (23)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (24)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (25)
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

FIG. 1: Graphical representation of the unitarity constraint VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a

triangle in the complex plane.

Each of these three relations requires the sum of three complex quantities to vanish and so

can be geometrically represented in the complex plane as a triangle. These are “the unitarity

triangles”, though the term “unitarity triangle” is usually reserved for the relation (25) only.

The unitarity triangle related to Eq. (25) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (25) by (a) choosing a phase convention

such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗

cb|. Step (a) aligns

one side of the triangle with the real axis, and step (b) makes the length of this side 1.

The form of the triangle is unchanged. Two vertices of the rescaled unitarity triangle are

thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The area of the rescaled unitarity triangle is |η|/2.

Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex

sides are

Ru ≡
∣

∣

∣

∣

VudVub
VcdVcb

∣

∣

∣

∣

=
√

ρ2 + η2, Rt ≡
∣

∣

∣

∣

VtdVtb
VcdVcb

∣

∣

∣

∣

=
√

(1 − ρ)2 + η2. (26)

The three angles of the unitarity triangle are defined as follows [6, 7]:

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

. (27)

They are physical quantities and can be independently measured by CP asymmetries in B

decays. It is also useful to define the two small angles of the unitarity triangles (24,23):

βs ≡ arg

[

−VtsV
∗
tb

VcsV
∗
cb

]

, βK ≡ arg

[

− VcsV
∗
cd

VusV
∗
ud

]

. (28)
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III. THE NEW PHYSICS FLAVOR PUZZLE

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above

mPlanck ∼ 1019 GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales

above mseesaw ∼ 1014 GeV;

3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest

that the scale where the SM is replaced with a more fundamental theory is actually

much lower, ΛNP ∼< 1 TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must

be added to LSM of Eq. (6). These are terms of dimension higher than four in the fields

which, therefore, have couplings that are inversely proportional to the scale of new physics

ΛNP. For example, the lowest dimension non-renormalizable terms are dimension five:

−Ldim−5
Yukawa =

Zν
ij

ΛNP
LILiL

I
Ljφφ+ h.c.. (29)

These are the seesaw terms, leading to neutrino masses.

As concers quark flavor physics, consider, for example, the following dimension-six, four-

fermion, flavor changing operators:

L∆F=2 =
zsd
Λ2

NP

(dLγµsL)
2 +

zcu
Λ2

NP

(cLγµuL)
2 +

zbd
Λ2

NP

(dLγµbL)2 +
zbs
Λ2

NP

(sLγµbL)2. (30)

Each of these terms contributes to the mass splitting between the corresponding two neutral

mesons. For example, the term L∆B=2 ∝ (dLγµbL)
2 contributes to ∆mB, the mass difference

between the two neutral B-mesons. We use MB
12 = 1

2mB
〈B0|L∆F=2|B0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B0〉 = −1

3
m2
Bf

2
BBB. (31)

Analogous expressions hold for the other neutral mesons. This leads to ∆mB/mB ∼
(zbd/3)(fB/ΛNP)2. Experiments give:

ǫK ∼ 2.28 × 10−3,

∆mK/mK ∼ 7.0 × 10−15,
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∆mD/mD ∼< 2 × 10−14,

∆mB/mB ∼ 6.3 × 10−14,

∆mBs
/mBs

∼ 2.2 × 10−13. (32)

These measurements give then the following constraints (the bound on Im(zsd) is stronger

by a factor of (2
√

2ǫK)−1 than the bound on |zsd|):

ΛNP ∼>















































√

Im(zsd) 2 × 104 TeV ǫK
√
zsd 1 × 103 TeV ∆mK

√
zcu 8 × 102 TeV ∆mD

√
zbd 5 × 102 TeV ∆mB

√
zbs 2 × 102 TeV ∆mBs

(33)

If the new physics has a generic flavor structure, that is zij = O(1), then its scale must be

above 103 − 104 TeV. If indeed ΛNP ≫ TeV , it means that we have misinterpreted the hints

from the fine-tuning problem and the dark matter puzzle. There is, however, another way

to look at these constraints:

Im(zsd) ∼< 5 × 10−9 (ΛNP/TeV )2,

zsd ∼< 7 × 10−7 (ΛNP/TeV )2,

zcu ∼< 2 × 10−6 (ΛNP/TeV )2,

zbd ∼< 4 × 10−6 (ΛNP/TeV )2,

zbs ∼< 3 × 10−5 (ΛNP/TeV )2. (34)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from

generic.

Within the SM (a detailed derivation can be found in Appendix B of [8]), we have (using

VIA for the matrix element and neglecting QCD corrections)

2MB
12

mB
≈ −α

2
2

12

f 2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (35)

where xi = m2
i /m

2
W and

S0(x) =
x

(1 − x)2

[

1 − 11x

4
+
x2

4
− 3x2 ln x

2(1 − x)

]

. (36)
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This expression allows us to extract the weak and flavor suppression factors that apply in

the SM:1

Im(zSM
sd ) ∼ α2

2y
2
t |VtdVts|2 ∼ 1 × 10−10,

zSM
sd ∼ α2

2y
2
c |VcdVcs|2 ∼ 5 × 10−9,

zSM
bd ∼ α2

2y
2
t |VtdVtb|2 ∼ 7 × 10−8,

zSM
bs ∼ α2

2y
2
t |VtsVtb|2 ∼ 2 × 10−6. (37)

It is clear than that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed

by factors that are comparable or smaller than the SM ones. Why does that happen? This

is the new physics flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic

means that flavor measurements are a good probe of the new physics. Perhaps the best-

studied example is that of supersymmetry. Here, the spectrum of the superpartners and

the structure of their couplings to the SM fermions will allow us to probe the mechanism of

dynamical supersymmetry breaking.

IV. LESSONS FROM D0 −D
0

MIXING

We use recent experimental information on D0 −D
0

to draw important lessons on super-

symmetry. This demonstrates how flavor physics provides a significant probe of supersym-

metry.

A. Supersymmetric Contributions to Neutral Meson Mixing

We consider the squark-gluino box diagram contribution to D0 − D
0

mixing amplitude

that is proportional toKu
2iK

u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino couplings

to a left-handed up quark and their supersymmetric squark partners. (In the language of

the mass insertion approximation, we calculate here the contribution that is ∝ [(δuLL)12]
2.)

We work in the mass basis for both quarks and squarks.

1 The SM contribution to ∆mD is dominated by long distance physics, with zSM
cu

∝ α2
2y

2
s
(Λ/mD)2|VcsVus|2 ∼

5 × 10−12. The short distance contribution is ∝ α2
2(y

4
s
/y2

c
)|VcsVus|2 ∼ 5 × 10−13.
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The contribution is given by

MD
12 = −i4π

2

27
α2
smDf

2
DBDηQCD

∑

i,j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j )(11Ĩ4ij + 4m̃2

gI4ij). (38)

where

Ĩ4ij ≡
∫

d4p

(2π)4

p2

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[

m̃2
g

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃4
i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2

ln
m̃2
i

m̃2
g

+
m̃4
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2

ln
m̃2
j

m̃2
g

]

, (39)

I4ij ≡
∫

d4p

(2π)4

1

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[

1

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃2
i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2

ln
m̃2
i

m̃2
g

+
m̃2
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2

ln
m̃2
j

m̃2
g

]

. (40)

We now follow the discussion in refs. [9, 10]. To see the consequences of the super-GIM

mechanism, let us expand the expression for the box integral around some value m̃2
q for the

squark masses-squared:

I4(m̃
2
g, m̃

2
i , m̃

2
j) = I4(m̃

2
g, m̃

2
q + δm̃2

i , m̃
2
q + δm̃2

j )

= I4(m̃
2
g, m̃

2
q, m̃

2
q) + (δm̃2

i + δm̃2
j )I5(m̃

2
g, m̃

2
q, m̃

2
q , m̃

2
q)

1

2

[

(δm̃2
i )

2 + (δm̃2
j )

2 + 2(δm̃2
i )(δm̃

2
j)
]

I6(m̃
2
g, m̃

2
q , m̃

2
q, m̃

2
q, m̃

2
q) + · · · ,(41)

where

In(m̃
2
g, m̃

2
q, . . . , m̃

2
q) ≡

∫

d4p

(2π)4

1

(p2 − m̃2
g)

2(p2 − m̃2
q)
n−2

, (42)

and similarly for Ĩ4ij. Note that In ∝ (m̃2
q)
n−2 and Ĩn ∝ (m̃2

q)
n−3. Thus, using x ≡ m̃2

g/m̃
2
q,

it is customary to define

In ≡ i

(4π)2(m̃2
q)
n−2

fn(x), Ĩn ≡ i

(4π)2(m̃2
q)
n−3

f̃n(x). (43)

The unitarity of the mixing matrix implies that

∑

i

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) =

∑

j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) = 0. (44)
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We learn that the terms that are proportional f4, f̃4, f5 and f̃5 vanish in their contribution to

M12. When δm̃2
i ≪ m̃2

q for all i, the leading contributions to M12 come from f6 and f̃6. We

learn that for quasi-degenerate squarks, the leading contribution is quadratic in the small

mass-squared difference. The functions f6(x) and f̃6(x) are given by

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(1 − x)5
,

f̃6(x) =
6x(1 + x) ln x− x3 − 9x2 + 9x+ 1

3(1 − x)5
. (45)

For example, with x = 1, f6(1) = −1/20 and f̃6 = +1/30; with x = 2.33, f6(2.33) = −0.015

and f̃6 = +0.013.

To further simplify things, let us consider a two generation case. Then

MD
12 ∝ 2(Ku

21K
u∗
11 )2(δm̃2

1)
2 + 2(Ku

22K
u∗
12 )2(δm̃2

2)
2 + (Ku

21K
u∗
11K

u
22K

u∗
12 )(δm̃2

1 + δm̃2
2)

2

= (Ku
21K

u∗
11 )2(m̃2

2 − m̃2
1)

2. (46)

We thus rewrite Eq. (38) for the case of quasi-degenerate squarks:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )2. (47)

For example, for x = 1.1, 11f̃6(x) + 4xf6(x) = +0.14. For x = 2.33, 11f̃6(x) + 4xf6(x) =

+0.003.

A similar expression holds for the neutral kaon system:

MK
12 =

α2
smKf

2
KBKηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Kd
21K

d∗
11 )2. (48)

The mixing matrices Ku and Kd, which parametrize the gluino couplings to the left-handed

quarks and their superpartners, are different from each other, but they are related through

the CKM matrix:

KuKd† = V. (49)

The masses m̃q and ∆m̃2
21 are the same for the down and up sector, up to small SU(2)L

breaking effects.

B. Non-degenerate squarks at the LHC?

Eqs. (47) and (48) can be translated into our generic language:

ΛNP = m̃q,

13



z12 =
11f6(x) + 4xf̃6(x)

18
α2
s

(

∆m̃2
21

m̃2
q

)2

,

zcu = z12 sin2 θ̃u12,

zsd = z12 sin2 θ̃d12, (50)

with Eq. (49) giving

sin θ̃u12 − sin θ̃d12 ≈ sin θc = 0.23. (51)

We now ask the following question: Is it possible that the first two generation squarks,

Q̃L1,2, are accessible to the LHC (say, m̃q ∼< 1 TeV ), and are not degenerate?

To answer this question, we use Eqs. (34). For ΛNP ∼< 1 TeV , we have zcu ∼< 2 × 10−6

and zsd ∼< 7 × 10−7. On the other hand, for non-degenerate squarks, ∆m̃2
21/m̃

2
q ∼ 1 and, for

example, 11f6(1) + 4f̃6(1) = 1/6, we have z12 = 8 × 10−5. Then we need, simultaneously,

sin θ̃u12 ∼< 0.15 and sin θ̃d12 ∼< 0.09, but this is inconsistent with Eq. (51).

There are three ways out of this situation:

1. The first two generation squarks are quasi-degenerate. The minimal level of degeneracy

is (m2 −m1)/(m2 +m1) ∼< 0.2. It could be the result of RGE [10].

2. The first two generation squarks are heavy. Putting sin θ̃u12 = 0.23 and sin θ̃d12 ≈ 0 , as

in models of alignment [11, 12], Eq. (33) leads to

m̃q ∼> 2 TeV. (52)

3. The ratio x = m̃2
g/m̃

2
q is in a fine-tuned region of parameter space where there are

accidental cancellations in 11f̃6(x) + 4xf6(x). For example, for x = 2.33, this combination

is ∼ 0.003 and the bound (52) is relaxed by a factor of 7.

Barring such accidental cancellations, the conclusion is that if squarks are within the

reach of the LHC, they cannot be degenerate [13, 14].

V. LESSONS FROM SψKS

The measurement of the CP asymmetry in the B → J/ψKS decay and in other modes

that proceed via the b → cc̄s quark transition signified a new era in our understanding of

CP violation. In particular, it provided the first precision test of the Kobayashi-Maskawa

mechanism.
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A. CP violation in neutral B decays to final CP eigenstates

We define decay amplitudes ofB (which could be charged or neutral) and its CP conjugate

B to a multi-particle final state f and its CP conjugate f as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (53)

where H is the Hamiltonian governing weak interactions. The action of CP on these states

introduces phases ξB and ξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,

CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (54)

so that (CP )2 = 1. The phases ξB and ξf are arbitrary and unphysical because of the flavor

symmetry of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then

Af and Af have the same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (55)

A state that is initially a superposition of B0 and B0, say

|ψ(0)〉 = a(0)|B0〉 + b(0)|B0〉 , (56)

will evolve in time acquiring components that describe all possible decay final states

{f1, f2, . . .}, that is,

|ψ(t)〉 = a(t)|B0〉 + b(t)|B0〉 + c1(t)|f1〉 + c2(t)|f2〉 + · · · . (57)

If we are interested in computing only the values of a(t) and b(t) (and not the values of

all ci(t)), and if the times t in which we are interested are much larger than the typical

strong interaction scale, then we can use a much simplified formalism [15]. The simplified

time evolution is determined by a 2×2 effective Hamiltonian H that is not Hermitian, since

otherwise the mesons would only oscillate and not decay. Any complex matrix, such as H,

can be written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ . (58)

M and Γ are associated with (B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and

on-shell (absorptive) intermediate states, respectively. Diagonal elements of M and Γ are

15



associated with the flavor-conserving transitions B0 → B0 and B0 → B0 while off-diagonal

elements are associated with flavor-changing transitions B0 ↔ B0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex

parameters pL,H and qL,H to specify the components of the strong interaction eigenstates,

B0 and B0, in the light (BL) and heavy (BH) mass eigenstates:

|BL,H〉 = pL,H |B0〉 ± qL,H |B0〉 (59)

with the normalization |pL,H|2 + |qL,H|2 = 1. If either CP or CPT is a symmetry of H
(independently of whether T is conserved or violated) then M11 = M22 and Γ11 = Γ22, and

solving the eigenvalue problem for H yields pL = pH ≡ p and qL = qH ≡ q with

(

q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (60)

From now on we assume that CPT is conserved. If either CP or T is a symmetry of H
(independently of whether CPT is conserved or violated), then M12 and Γ12 are relatively

real, leading to
(

q

p

)2

= e2iξB ⇒
∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

= 1 , (61)

where ξB is the arbitrary unphysical phase introduced in Eq. (54).

The real and imaginary parts of the eigenvalues of H corresponding to |BL,H〉 repre-

sent their masses and decay-widths, respectively. The mass difference ∆mB and the width

difference ∆ΓB are defined as follows:

∆mB ≡ MH −ML, ∆Γ ≡ ΓH − ΓL. (62)

Note that here ∆mB is positive by definition, while the sign of ∆ΓB is to be experimentally

determined. The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (63)

It is useful to define dimensionless ratios x and y:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (64)

Solving the eigenvalue equation gives

(∆mB)2 − 1

4
(∆ΓB)2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ

∗
12). (65)
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All CP-violating observables in B and B decays to final states f and f can be expressed in

terms of phase-convention-independent combinations of Af , Af , Af and Af , together with,

for neutral-meson decays only, q/p. CP violation in charged-meson decays depends only

on the combination |Af/Af |, while CP violation in neutral-meson decays is complicated by

B0 ↔ B0 oscillations and depends, additionally, on |q/p| and on λf ≡ (q/p)(Af/Af).

For neutral D, B, and Bs mesons, ∆Γ/Γ ≪ 1 and so both mass eigenstates must be

considered in their evolution. We denote the state of an initially pure |B0〉 or |B0〉 af-

ter an elapsed proper time t as |B0
phys(t)〉 or |B0

phys(t)〉, respectively. Using the effective

Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (66)

where

g±(t) ≡ 1

2

(

e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)

. (67)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf

=
(

|Af |2 + |(q/p)Af |2
)

cosh(yΓt) +
(

|Af |2 − |(q/p)Af |2
)

cos(xΓt)

+ 2Re((q/p)A∗
fAf) sinh(yΓt) − 2 Im((q/p)A∗

fAf) sin(xΓt) , (68)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=
(

|(p/q)Af |2 + |Af |2
)

cosh(yΓt) −
(

|(p/q)Af |2 − |Af |2
)

cos(xΓt)

+ 2Re((p/q)AfA∗
f) sinh(yΓt) − 2 Im((p/q)AfA

∗
f) sin(xΓt) , (69)

where Nf is a common normalization factor. Decay rates to the CP-conjugate final state

f are obtained analogously, with Nf = Nf and the substitutions Af → Af and Af → Af

in Eqs. (68,69). Terms proportional to |Af |2 or |Af |2 are associated with decays that occur

without any net B ↔ B oscillation, while terms proportional to |(q/p)Af |2 or |(p/q)Af |2

are associated with decays following a net oscillation. The sinh(yΓt) and sin(xΓt) terms

of Eqs. (68,69) are associated with the interference between these two cases. Note that, in

multi-body decays, amplitudes are functions of phase-space variables. Interference may be

present in some regions but not others, and is strongly influenced by resonant substructure.

One possible manifestation of CP-violating effects in meson decays [16] is in the interfer-

ence between a decay without mixing, B0 → f , and a decay with mixing, B0 → B0 → f
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(such an effect occurs only in decays to final states that are common to B0 and B0, including

all CP eigenstates). It is defined by

Im(λf ) 6= 0 , (70)

with

λf ≡
q

p

Af
Af

. (71)

This form of CP violation can be observed, for example, using the asymmetry of neutral

meson decays into final CP eigenstates fCP

AfCP
(t) ≡ dΓ/dt[B0

phys(t) → fCP ] − dΓ/dt[B0
phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (72)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation for B mesons), AfCP
has a

particularly simple form [17–19]:

Af(t) = Sf sin(∆mt) − Cf cos(∆mt),

Sf ≡ 2 Im(λf )

1 + |λf |2
, Cf ≡

1 − |λf |2
1 + |λf |2

, (73)

Consider the B → f decay amplitude Af , and the CP conjugate process, B → f ,

with decay amplitude Af . There are two types of phases that may appear in these decay

amplitudes. Complex parameters in any Lagrangian term that contributes to the amplitude

will appear in complex conjugate form in the CP-conjugate amplitude. Thus their phases

appear in Af and Af with opposite signs. In the Standard Model, these phases occur only

in the couplings of the W± bosons and hence are often called “weak phases”. The weak

phase of any single term is convention dependent. However, the difference between the weak

phases in two different terms in Af is convention independent. A second type of phase can

appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is

the possible contribution from intermediate on-shell states in the decay process. Since these

phases are generated by CP-invariant interactions, they are the same in Af and Af . Usually

the dominant rescattering is due to strong interactions and hence the designation “strong

phases” for the phase shifts so induced. Again, only the relative strong phases between

different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-

transformation phases of Eq. (55). Those spurious phases are due to an arbitrary choice of
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phase convention, and do not originate from any dynamics or induce any CP violation. For

simplicity, we set them to zero from here on.

It is useful to write each contribution ai to Af in three parts: its magnitude |ai|, its

weak phase φi, and its strong phase δi. If, for example, there are two such contributions,

Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (74)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (75)

Each of the phases appearing in Eqs. (74,75) is convention dependent, but combinations

such as δ1 − δ2, φ1 − φ2, φM − φΓ and φM + φ1 − φ1 (where φ1 is a weak phase contributing

to Af ) are physical.

In the approximations that only a single weak phase contributes to decay, Af =

|af |ei(δf +φf ), and that |Γ12/M12| = 0, we obtain |λf | = 1 and the CP asymmetries in decays

to a final CP eigenstate f [Eq. (72)] with eigenvalue ηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf). (76)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are

involved in the extraction of its value from Im(λf ).

B. The CP asymmetry in B → ψKS

The small deviation (less than one percent) of |q/p| from 1 implies that, at the present

level of experimental precision, CP violation in B mixing is a negligible effect. Thus, for the

purpose of analyzing CP asymmetries in hadronic B decays, we can use

λf = e−iφB(Af/Af) , (77)

where φB refers to the phase of M12 [see Eq. (75)]. Within the Standard Model, the corre-

sponding phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (78)
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FIG. 2: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or

Bs → f via a b̄→ q̄qq̄′ quark-level process.
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Some of the most interesting decays involve final states that are common to B0 and

B
0

[20–22], such as B → J/ψKS. Here eq. (73) applies. The processes of interest proceed

via quark transitions of the form b̄ → c̄cs̄. There are contributions from both tree (t) and

penguin (pqu, where qu = u, c, t is the quark in the loop) diagrams (see Fig. 2) which carry

different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(

V ∗
qubVqus

)

pquf . (79)

(The distinction between tree and penguin contributions is a heuristic one, the separation

by the operator that enters is more precise. For a detailed discussion of the more complete

operator product approach, which also includes higher order QCD corrections, see, for ex-

ample, ref. [23].) Using CKM unitarity, these decay amplitudes can always be written in

terms of just two CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (80)

where TψK = tψK + pcψK − ptψK and P u
ψK = puψK − ptψK . A subtlety arises in this decay that

is related to the fact that B0 → J/ψK0 and B
0 → J/ψK0. A common final state, e.g.

J/ψKS, is reached only via K0 −K0 mixing. Consequently, the phase factor corresponding

to neutral K mixing, e−iφK = (V ∗
cdVcs)/(VcdV

∗
cs), plays a role:

AψKS

AψKS

= −(VcbV
∗
cs)TψK + (VubV

∗
us)P

u
ψK

(V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK

× V ∗
cdVcs
VcdV

∗
cs

. (81)

For B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect the P u contribution to

AψK , in the SM, to an approximation that is better than one percent:

λψKS
= −e−2iβ ⇒ SψKS

= sin 2β, CψKS
= 0 , (82)
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where β is defined in Eq. (27). (Below the percent level, several effects modify this equation

[24, 25].) The SM prediction for sin 2β, based on all other constraints, is [26]

sin 2β = 0.76 ± 0.04. (83)

The experimental measurements give the following ranges [27]:

SψKS
= 0.68 ± 0.03, CψKS

= 0.01 ± 0.02 . (84)

The consistency of the experimental results (84) with the SM predictions (82,83) means

that the KM mechanism of CP violation has successfully passed its first precision test. For

the first time, we can make the following statement based on experimental evidence:

The Kobayashi-Maskawa mechanism is the dominant source of the CP violation

observed in flavor changing processes.

There are two qualifications implicit in this statement, and we now explain them in little

more detail [28].

• ‘Dominant’: While SψK is measured with an accuracy of order 0.04, the accuracy of

the SM prediction for sin 2β is only at the level of 0.1. Thus, it is quite possible that

there is a new physics contribution at the level of |MNP
12 /M

SM
12 | ∼< O(0.1).

• ‘Flavor changing’: It may well happen that the KM phase, which is closely related

to flavor violation through the CKM matrix, dominates meson decays while new,

flavor diagonal phases (such as the two unavoidable phases in the universal version of

the MSSM) dominate observables such as electric dipole moments by many orders of

magnitude.

The measurement of SψK provides a significant constraint on the unitarity triangle. In

the ρ− η plane, it reads:

sin 2β =
2η(1 − ρ)

η2 + (1 − ρ)2
= 0.68 ± 0.03. (85)

One can get an impression of the impact of this constraint by looking at Fig. 3, where the

blue region represents sin 2β = 0.68±0.03. An impression of the KM test can be achieved by

observing that the blue region has an excellent overlap with the region allowed by all other

measurements. A comparison between the constraints in the ρ−η plane from CP conserving

and CP violating processes is provided in Fig. 4. The impressive consistency between the
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FIG. 3: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charm-

less semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral

meson systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and

B → DK (γ). Taken from [29].

two allowed regions is the basis for our statement that the KM mechanism has passed its

first precision tests. The fact that the allowed region from the CP violating processes is

more strongly constrained is related to the fact that CP is a good symmetry of the strong

interactions and that, therefore, various CP violating observables – in particular SψK – can

be cleanly interpreted.

The measurement of SψKS
cleanly determines the relative phase between the B0 − B

0

mixing amplitude and the b → cc̄s decay amplitude (sin 2β in the SM). The b → cc̄s decay

has Standard Model tree contributions and therefore is very unlikely to be significantly

affected by new physics. On the other hand, the mixing amplitude can be easily modified

by new physics. We parametrize such a modification as follows:

r2
d e

2iθd =
M12

MSM
12

. (86)
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FIG. 4: Constraints in the ρ− η plane from (a) CP conserving or (b) CP violating processes.
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Then the following observables provide constraints on r2
d and 2θd:

SψKS
= sin(2β + 2θd),

∆mB = r2
d(∆mB)SM,

ASL = −Re
(

Γ12

M12

)SM sin 2θd
r2
d

+ Im
(

Γ12

M12

)SM cos 2θd
r2
d

. (87)

Examining whether SψKS
, ∆mB and ASL fit the SM prediction, that is, whether θd 6= 0

and/or r2
d 6= 1, we can answer the following question (see e.g. [30]):

Is there new physics in B0 − B
0

mixing?

Thanks to the fact that quite a few observables that are related to SM tree level processes

have already been measured, we are able to refer to this question in a quantitative way. The

tree level processes are insensitive to new physics and can be used to constrain ρ and η even

in the presence of new physics contributions to loop processes, such as ∆mB . Among these

observables we have |Vcb| and |Vub| from semileptonic B decays, the phase γ from B → DK

decays, and the phase α from B → ρρ decays (in combination with SψK). One can fit these

observables, and the ones in Eq. (87) to the four parameters ρ, η, r2
d and 2θd. The resulting

constraints are shown in Fig. 5.

A long list of models that require a significant modification of the B0 − B
0

mixing am-

plitude are excluded. We can further conclude from Fig. 5 that a new physics contribution

to the B0 − B
0

mixing amplitude at a level higher than about 30% is now disfavored.
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FIG. 5: Constraints in the (a) ρ− η plane (b) r2d − 2θd plane, assuming that NP contributions to

tree level processes are negligible [29].
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VI. FLAVOR AT THE LHC

A. Top Physics

The LHC will study the physics of electroweak symmetry breaking. There are high hopes

that it will not only discover the Higgs, but also shed light on the fine-tuning problem that

is related to the Higgs mass.

The top quark plays a role in electroweak symmetry breaking. It poses the most severe

fine tuning problem to the Higgs,

− 3

8π2
y2
tΛ

2
NP = −(2 TeV )2

(

ΛNP

10 TeV

)2

. (88)

Therefore, very likely there exists a “top-partner” that couples to the Higgs and cancels the

quadratically divergent contributions to the Higgs mass. Indeed, the LHC can, in principle,

measure the mass and the production cross section and shed light on the question of the

spin of the top partner [31]. Moreover, in some models – such as minimal SUGRA – it is

the top quark that induces the electroweak symmetry breaking.

Given that the top quark is the only one that has an order one coupling to the Higgs,

it plays a special role in various extensions of the SM. For example, in RS1 models, there
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is a strong enhancement of t → cZ decays (see e.g. [32]), and it is the only one that has a

significant coupling to the Kaluza-Klein gluons (see e.g. [33]).

Thus, the LHC is likely to yield exciting top physics.

B. Minimal flavor violation (MFV)

A simple and rather generic principle that can guarantee that low energy flavor changing

processes would deviate only very little from the SM predictions is that of minimal flavor

violation (MFV) [34]. The basic idea can be described as follows. The gauge interactions

of the SM are universal in flavor space. The only breaking of this flavor universality comes

from the three Yukawa matrices, YU , YD and YE. If this remains true in the presence of the

new physics, namely YU , YD and YE are the only flavor non-universal parameters, then the

model belongs to the MFV class.

The Standard Model with vanishing Yukawa couplings has a large global symmetry,

U(3)5. In this section we concentrate only on the quarks. The non-Abelian part of the

flavor symmetry for the quarks can be decomposed as follows:

Gf = SU(3)Q ⊗ SU(3)D ⊗ SU(3)U , (89)

with the three generations of quark fields transforming as follows:

QL(3, 1, 1), DR(1, 3, 1), UR(1, 1, 3). (90)

The Yukawa interactions,

LY = QLYDDRH +QLYUURHc, (91)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions

with the following transformation properties under Gf :

YD ∼ (3, 3̄, 1), YU ∼ (3, 1, 3̄). (92)

When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields

which transform under the flavor symmetry, and then require that all the Lagrangian terms,

constructed from the SM fields, YD and YU , must be (formally) invariant under the flavor

group Gf . Of course, in reality, LY breaks Gf precisely because YD,U are not fields and do

not transform under the symmetry.
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Treating the Yukawa couplings as Gf-breaking spurions is useful to understand the flavor

suppression of various flavor changing processes. Think, for example, on ∆mK , the mass

difference between the two neutral K-meson mass eigenstates. It is related to an operator

with the flavor structure of (dLsL)
2. The coefficient of this operator must be ∝ y4

c sin2 θc.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be

applied in two ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension

operators, constructed from SM and Y fields, are formally invariant under Gf .

2. If we consider a full high-energy theory that extends the SM, then all operators,

constructed from SM, Y and the new fields, are formally invariant under Gf .

If the LHC discovers new particles that couple to the SM fermions, then it will be able

to test solutions to the new physics flavor puzzle such as MFV [35]. Much of its power to

test such frameworks is based on identifying top and bottom quarks.

We conclude that flavor physics have taught us much about the Standard Model and its

extensions. Improvements in precision flavor measurements, as well as measurements at the

LHC related to new particles that couple to the SM ones, are likely to teach us much more.
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