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Outline

1  Brief overview
Probability: frequentist vs subjective (Bayesian)Probability:  frequentist vs. subjective (Bayesian)
Statistics: parameter estimation, hypothesis tests

2 Statistical tests for Particle Ph sics2  Statistical tests for Particle Physics
multivariate methods for event selection

Wednesday

goodness-of-fit tests for discovery Friday

3  Systematic errors  
Treatment of nuisance parameters
Bayesian methods for systematics, MCMC
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Testing goodness-of-fit
Suppose hypothesis H predicts pdf 
observations

for a set of
observations

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 
data space represents less more 

compatiblecompatibility with H than 
does the point less 

ibl

compatible
with H

( i !) compatible
with H

(Not unique!)
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p-values
Express ‘goodness-of-fit’ by giving the p-value for H:

p = probability, under assumption of H, to observe data with p p y, p ,
equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!This is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H
t t bl b ti ) I B i t ti ti drepresents a repeatable observation). In Bayesian statistics we do; 

use Bayes’ theorem to obtain

where π (H) is the prior probability for H.
For now stick with the frequentist approach; 
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result is p-value, regrettably easy to misinterpret as P(H).



p-value example:  testing whether a coin is ‘fair’
Probability to observe n heads in N coin tosses is binomial:

Hypothesis H: the coin is fair (p = 0 5)Hypothesis H:  the coin is fair (p  0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding

th b biliti f th l iup the probabilities for these values gives:

i.e. p = 0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.
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p-value of an observed signal
Suppose we observe n events; these can consist of:

nb events from known processes (background)b p ( g )
ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb
is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim
id f di ?evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-valueSignificance from p-value
Often define significance Z as the number of standard deviations
h G i i bl ld fl i di ithat a Gaussian variable would fluctuate in one direction

to give the same p-value.

TMath::Prob

TMath::NormQuantile
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The significance of a peak

Suppose we measure a value 
x for each event and find:x for each event and find:

Each bin (observed) is aEach bin (observed) is a
Poisson r.v., means are
given by dashed lines.g y

I h bi i h h k 11 i f d i h b 3 2In the two bins with the peak, 11 entries found with b = 3.2.
The p-value for the s = 0 hypothesis is:
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The significance of a peak (2)

But... did we know where to look for the peak?

i P( 11) i 2 dj bi→ give P(n ≥ 11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

→ take x window several times the expected resolution

How many bins × distributions have we looked at?How many bins × distributions have we looked at?

→ look at a thousand of them, you’ll find a 10-3 effect

Did dj h ‘ h ’ h k?Did we adjust the cuts to ‘enhance’ the peak?

→ freeze cuts, repeat analysis with new data

Should we publish????
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Using shape of a distribution in a search
Suppose we want to search for a specific model (i.e. beyond 
the Standard Model); contains parameter θthe Standard Model); contains parameter θ.

Select candidate events; for each event measure some quantity
and make histogram:

Expected number of entries in ith bin:

x and make histogram:

p

signal backgroundg

Suppose the ‘no signal’ hypothesis is θ = θ0, i.e., s(θ0) = 0.

Probability is product of 
Poisson probabilities:
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Testing the hypothesized θ
Construct e.g. the likelihood ratio:

Find the sampling distribution
i e we need to know how t(θ ) would be distributed if the

(e.g. use MC)
i.e. we need to know how t(θ ) would be distributed if the
entire experiment would be repeated under assumption of the
background only hypothesis (parameter value θ0).g y yp (p 0)

p-value of θ0 using test variable 
d i d t b iti t θdesigned to be sensitive to θ:

This gives the probability under the assumption of backgroundThis gives the probability, under the assumption of background
only, to see data as ‘signal like’ or more so, relative to what we saw.
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Making a discovery / setting limitsg y g

Repeat this exercise for all θ

If we find a small p-value → discovery

Test hypothesized θ using

Is the new signal compatible with what you were looking for?

Test hypothesized θ using

If reject θIf reject θ.

here use e.g. α = 0.05

Confidence interval at confidence level 1 − α
= set of θ values not rejected by a test of significance level α.
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When to publishWhen to publish
HEP folklore: claim discovery when p-value of background only 
hypothesis is 2 85 × 10-7 corresponding to significance Z = 5hypothesis is  2.85 × 10 7, corresponding to significance Z = 5.

This is very subjective and really should depend on the s s ve y subjec ve d e y s ou d depe d o e
prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery
D0D0 mixing ~0.05
Higgs 10-7 (?)Higgs ~ 10 7 (?)
Life on Mars ~10−10

Astrology ∼10−20gy
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Statistical vs. systematic errors 
Statistical errors:  

How much would the result fluctuate upon repetition of the 
measurement?

Implies some set of assumptions to define probability of 
outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,y y p g

model (theoretical) uncertainty;
modelling of measurement apparatus.g pp

Usually taken to mean the sources of error do not vary 
upon repetition of the measurement.  Often result from 
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p p
uncertain value of, e.g., calibration constants, efficiencies, etc.



Systematic errors and nuisance parameters
Response of measurement apparatus is never modelled perfectly:

va
lu

e) model:  

truth:

ea
su

re
d 

x (true value)

y
(m

e

x (true value)

Model can be made to approximate better the truth by including
fmore free parameters.

systematic uncertainty ↔ nuisance parameters
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Example:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

assume xi and σi known.

Goal:  estimate θ0

(don’t care about θ1).(don t care about θ1).
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Case #1:  θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     p

to find 
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Case #2:  both θ0 and θ1 unknown

Standard deviations from

tangent lines to contour

C l i bCorrelation between

causes errors

to increase.
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Case #3: we have a measurement t1 of θ1

The information on θThe information on θ1

improves accuracy of
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The profile likelihood
The ‘tangent plane’ method is a special case of using the

profile likelihood:   p

is found by maximizing L (θ0, θ1) for each θ0.

Equivalently use 

The interval obtained from is the same asThe interval obtained from                                    is the same as 

what is obtained from the tangents to

Well known in HEP as the ‘MINOS’ method in MINUIT.

Profile likelihood is one of several ‘pseudo-likelihoods’ usedProfile likelihood is one of several pseudo likelihoods  used
in problems with nuisance parameters.
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The Bayesian approachy pp
In Bayesian statistics we can associate a probability with
a hypothesis e g a parameter value θa hypothesis, e.g., a parameter value θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data y, → likelihood function L(y|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf p(θ | y) contains all our knowledge about θ.
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Case #4:  Bayesian methody
We need to associate prior probabilities with θ0 and θ1, e.g.,

reflects ‘prior ignorance’, in any
case much broader than

← based on previous 
measurement

Putting this into Bayes’ theorem gives:
easu e e

posterior    Q likelihood         × prior
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Bayesian method (continued)y ( )

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x):

In this example we can do the integral (rare).  We find

Ability to marginalize over nuisance parameters is an important
feature of Bayesian statistics
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...g p y p

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;y pp , g , ;
effective stat. error greater than √n .

Basic idea:  sample multidimensional 
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p
look, e.g., only at distribution of parameters of interest. 



Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with e g mean medianinterest with, e.g., mean, median,
standard deviation, etc.

Although numerical values of answer here same as in frequentist
i t t ti i diff t ( ti i t t?)
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case, interpretation is different (sometimes unimportant?)



Case #5:  Bayesian method with vague priory g p
Suppose we don’t have a previous measurement of θ1 but
rather some vague information, e g , a theorist tells us:rather some vague information, e.g., a theorist tells us:

θ1 ≥ 0 (essentially certain);

θ h ld h d f i d l h 0 1 ‘ ’θ1 should have order of magnitude less than 0.1 ‘or so’.  

Under pressure, the theorist sketches the following prior:

From this we will obtain posterior probabilities for θ0 (next slide).

We do not need to get the theorist to ‘commit’ to this prior;We do o eed o ge e eo s o co o s p o ;
final result has ‘if-then’ character.
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Sensitivity to priory p
Vary π(θ) to explore how extreme your prior beliefs would have 
to be to justify various conclusions (sensitivity analysis)to be to justify various conclusions (sensitivity analysis).

Try exponential with different Try different functional forms...
mean values...
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Wrapping up...Wrapping up... 
p-value for discovery = probability, under assumption of
background only to see data as signal like (or more so) relativebackground only, to see data as signal-like (or more so) relative
to the data you obtained.

≠ P(St d d M d l t )!≠ P(Standard Model true)!

Systematic errors ↔ nuisance parameters

If constrained by measurement → profile likelihoody p
Other prior info → Bayesian methods
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Extra slidesExtra slides 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 
generate a sequence of pointsgenerate a sequence of points 

1)  Start at some point Proposal density
e g Gaussian centred

2)  Generate  
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4) Generate4)  Generate

5)  If move to proposed point)

else old point repeated
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6)  Iterate



Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposalp p
density symmetric:

Test ratio is (Metropolis Hastings):Test ratio is (Metropolis-Hastings):

I if th d t i t i t f hi h t k itI.e. if the proposed step is to a point of higher           , take it;  
if not, only take the step with probability 
If d j d h i l
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If proposed step rejected, hop in place.



Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.q g

Look at trace plots, autocorrelation.
Check result with different proposal densityCheck result with different proposal density.
If you think it’s converged, try it again with 10 times 
more pointsmore points.
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LEP-style analysis:  CLb

Same basic idea: L(m) → l(m) → q(m) → test of m, etc.

For a chosen m, find p-value of background-only hypothesis:
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LEP-style analysis:  CLs+b

‘Normal’ way to get interval would be to reject hypothesized
m if 

By construction this interval will cover the true value of m
with probability 1 − α.
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LEP-style analysis:  CLs
The problem with the CLs+b method is that for high m, the 
distribution of q approaches that of the background-only hypothesis:

So a low fluctuation in the number of background events can
give CLs+b < α
This rejects a high m value even though we are not sensitive
to Higgs production with that mass; the reason was a low
fl t ti i th b k d
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fluctuation in the background.



CLs

A solution is to define:

and reject the hypothesized m if: 

So the CLs intervals ‘over-cover’; they are conservative.
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