IPPP

QCD & Monte Carlo Tools

Frank Krauss

Institute for Particle Physics Phenomenology **Durham University**

CERN, 6.-15.6.2007

MC techniques MC integration Matrix elements ME Limitations Survey of tools Detour: NLO

Topics of the lectures

- 1 Lecture 1: The Monte Carlo Principle
 - Monte Carlo as integration method
 - Hard physics simulation: Parton Level event generation
- 2 Lecture 2: *Dressing the Partons*
 - Hard physics simulation, cont'd: Parton Showers
- **3** Lecture 3: *Modelling beyond Perturbation Theory*
 - Soft physics simulation: Hadronization
 - Beyond factorization: Underlying Event
- Lecture 4: Higher Orders in Monte Carlos
 - Some nomenclature: Anatomy of HO calculations
 - Merging vs. Matching

Thanks to

- the other Sherpas: T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, J.Winter;
- other MC authors: S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber,

Orientation MC techniques MC integration Matrix elements ME Limitations Survey of tools Detour: NLO

Simulation's paradigm

Basic strategy

Divide event into stages, separated by different scales.

- Signal/background:
 - Exact matrix elements.
- QCD-Bremsstrahlung:
 Parton showers (also in initial state).
- Multiple interactions:
 Beyond factorization: Modeling.
- Hadronization:

Non-perturbative QCD: Modeling.

Outline of today's lecture

- Basics of MC: Integrals as averages
- MC integration in particle physics: Parton level event generation
- Limitations on the parton level (and attempts to overcome them)
- Survey of existing parton level tools
- Short introduction to NLO tools

Orientation

Prelude: Selecting from a distribution

"Exact" case

- Usually random numbers # "flat" in [0, 1].
- But: Want random numbers x according to density f(x).
- Solution:
 - Use integral F of f(x) and its inverse F^{-1}
 - $\int_{x_{\min}}^{x} dx' f(x') = \# \int_{x_{\min}}^{x_{\max}} dx' f(x')$

leading to

$$x = F^{-1}[F(x_{\min}) + \#(F(x_{\max}) - F(x_{\min}))].$$

Hit-or-miss

What, if no exact case?

- Take an "over-estimator" g(x): $g(x) > f(x) \ \forall x \in [x_{\min}, x_{\max}],$
 - with G and G^{-1} known:
- select an x according to g;
- accept or reject with f(x)/g(x);
- Obvious "guaranteed" g(x): $g(x) = \operatorname{Max}\{f(x)\}.$

Convergence of numerical integration

- Consider $I = \int_{0}^{1} dx^{D} f(\vec{x})$.
- Convergence behavior crucial for numerical evaluations. For integration (N = number of evaluations of f):
 - Trapezium rule $\simeq 1/N^{2/D}$
 - Simpson's rule $\simeq 1/N^{4/D}$
 - Central limit theorem $\simeq 1/\sqrt{N}$.
- Therefore: Use central limit theorem.

Monte Carlo integration

Monte Carlo integration

• Use random vectors $\vec{x}_i \longrightarrow$: Evaluate estimate of the integral $\langle I \rangle$ rather than I.

Matrix elements

$$\langle I(f)\rangle = \frac{1}{N}\sum_{i=1}^{N}f(\vec{x}_i).$$

(This is the original meaning of Monte Carlo: Use random numbers for integration.)

- Quality of estimate given by error estimator (variance) $\langle E(f) \rangle^2 = \frac{1}{N-1} \left[\langle I^2(f) \rangle - \langle I(f) \rangle^2 \right].$
- Name of the game: Minimize $\langle E(f) \rangle$.
- Problem: Large fluctuations in integrand f
- Solution: Smart sampling methods

Importance sampling

Basic idea: Put more samples in regions, where f largest ⇒ improves convergence behavior (corresponds to a Jacobian transformation).

- Assume a function $g(\vec{x})$ similar to $f(\vec{x})$;
- obviously then, $f(\vec{x})/g(\vec{x})$ is comparably smooth, hence $\langle E(f/g) \rangle$ is small.

Monte Carlo integration

Stratified sampling

Basic idea: Decompose integral in M sub-integrals

$$\langle I(f) \rangle = \sum_{j=1}^{M} \langle I_j(f) \rangle, \quad \langle E(f) \rangle^2 = \sum_{j=1}^{M} \langle E_j(f) \rangle^2$$

Then: Overall variance smallest, if "equally distributed".

⇒ Sample, where the fluctuations are.

- Divide interval in bins;
- adjust bin-size or weight per bin such that variance identical in all bins.

$$\langle I \rangle = 0.637 \pm 0.147 / \sqrt{N}$$

Example for stratified sampling: VEGAS

- Assume m bins in each dimension of \vec{x} .
- For each bin k in each dimension η ∈ [1, n] assume a weight (probability) α_k^(η) for x_k to be in that bin.
 Condition(s) on the weights:

$$\alpha_k^{(\eta)} \in [0,1], \sum_{k=1}^m \alpha_k^{(\eta)} = 1.$$

- For each bin in each dimension calculate $\langle I_k^{(\eta)} \rangle$ and $\langle E_k^{(\eta)} \rangle$. Obviously, for all η , $\langle I \rangle = \sum_{k=1}^m \langle I_k^{(\eta)} \rangle$, but error estimates different.
- In each dimensions, iterate and update the $\alpha_k^{(\eta)}$; example for updating:

$$\alpha_k^{(\eta)}(\mathsf{rm}\;\mathsf{new}) \propto \alpha_k^{(\eta)}(\mathsf{rm}\;\mathsf{old}) \left(\frac{\mathsf{E}_k^{(\eta)}}{\mathsf{E}_{\mathsf{tot.}}(\eta)}\right)^{\kappa}.$$

Problem with this simple algorithm:

Gets a hold only on fluctuations || to binning axes.

Monte Carlo integration

Multichannel sampling

Basic idea: Use a sum of functions $g_i(\vec{x})$ as Jacobian $g(\vec{x})$.

$$\implies g(\vec{x}) = \sum_{i=1}^{N} \alpha_i g_i(\vec{x});$$

⇒ condition on weights like stratified sampling; ("Combination" of importance & stratified sampling).

Algorithm for one iteration:

- Select g_i with probability $\alpha_i \to \vec{x}_j$.
- Calculate total weight $g(\vec{x}_j)$ and partial weights $g_i(\vec{x}_j)$
- Add $f(\vec{x_j})/g(\vec{x_j})$ to total result and $f(\vec{x_j})/g_i(\vec{x_j})$ to partial (channel-) results.
- After N sampling steps, update a-priori weights.

This is the method of choice for parton level event generation!

Monte Carlo integration

Selecting after sampling: Unweighting efficiency

Basic idea: Use hit-or-miss method;

Generate \vec{x} with integration method, compare actual $f(\vec{x})$ with maximal value during sampling; \implies "Unweighted events".

Comments:

- unweighting efficiency, $w_{\rm eff} = \langle f(\vec{x}_i)/f_{\rm max} \rangle =$ number of trials for each event.
- Good measure for integration performance.
- Expect $\log_{10} w_{\mathrm{eff}} \approx 3-5$ for good integration of multi-particle final states at tree-level.
- Maybe acceptable to use $f_{\max, \text{eff}} = K f_{\max}$ with K > 1. Problem: what to do with events where $f(\vec{x_j})/f_{\max, \text{eff}} > 1$? Answer: Add $\inf[f(\vec{x_j})/f_{\max, \text{eff}}] = k$ events and perform hit-or-miss on $f(\vec{x_j})/f_{\max, \text{eff}} - k$.

Particle physics example: Evaluation of cross sections

Simple example: $t \to bW^+ \to b\bar{l}\nu_l$:

$$\left|\mathcal{M}\right|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{p_t \cdot p_\nu \ p_b \cdot p_l}{(p_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

 $\begin{array}{l} \bullet \quad \text{Phase space integration (5-dim)} \\ \Gamma = \frac{1}{2m_t} \frac{1}{128\pi^3} \int \mathrm{d}\rho_W^2 \frac{\mathrm{d}^2\Omega_W}{4\pi} \frac{\mathrm{d}^2\Omega}{4\pi} \left(1 - \frac{\rho_W^2}{m_r^2}\right) |\mathcal{M}|^2 \\ \end{array}$

Advantages

- Throw 5 random numbers, construct four-momenta (⇒ full kinematics, "events")
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Stating the problem(s)

- Multi-particle final states for signals & backgrounds.
- Need to evaluate $d\sigma_N$:

$$\int_{\text{cuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i q_i \right) \left| \mathcal{M}_{p_1 p_2 \to N} \right|^2.$$

- Problem 1: Factorial growth of number of amplitudes.
- Problem 2: Complicated phase-space structure.
- Solutions: Numerical methods.

Factorial growth: $e^+e^- \rightarrow q\bar{q} + ng$

Parton level simulations

Basic ideas of efficient ME calculation

Need to evaluate
$$|\mathcal{M}|^2 = \left|\sum_i \mathcal{M}_i\right|^2$$

- Obvious: Traditional textbook methods (squaring, completeness relations, traces) fail
 - \implies result in proliferation of terms $(\mathcal{M}_i \mathcal{M}_i^*)$
 - ⇒ Better: Amplitudes are complex numbers,
 - ⇒ add them before squaring!
- Remember: spinors, gamma matrices have explicit form could be evaluated numerically (brute force) But: Rough method, lack of elegance, CPU-expensive

Helicity method

- Introduce basic helicity spinors (needs to "gauge"-vectors)
- Write everything as spinor products, e.g. $\bar{u}(p_1, h_1)u(p_2, h_2) = \text{complex numbers}.$
- Also: $(p + m) \implies \frac{1}{2} \sum_{r} \left[\left(1 + \frac{m^2}{n^2} \right) \bar{u}(p, h) u(p, h) + \left(1 \frac{m^2}{n^2} \right) \bar{v}(p, h) v(p, h) \right]$ (completeness relation)
- Find other genuine expressions:

$$\begin{array}{ccccc} Y(\rho_1,h_1,\;\rho_2,h_2) & := & \bar{u}(\rho_1,h_1)u(\rho_2,h_2) \\ X(\rho_1,h_1,\;\rho_2,h_2,\;\rho_3) & := & \bar{u}(\rho_1,h_1)\dot{\rho}_3u(\rho_2,h_2) \\ Z(\rho_1,h_1,\;\rho_2,h_2;\;\rho_3,h_3,\;\rho_4,h_4) & := & \bar{u}(\rho_1,h_1)\gamma^{\mu}u(\rho_2,h_2)\bar{u}(\rho_3,h_3)\gamma^{\mu}u(\rho_4,h_4) \,, \end{array}$$

all complex-valued functions of momenta & helicities.

Taming the factorial growth in the helicity method

- Reusing pieces: Calculate only once!
- Factoring out: Reduce number of multiplications!

Implemented as a-posteriori manipulations of amplitudes.

Parton level simulations

Recursion methods (off-shell)

Basic idea: Recursively build one-particle off-shell currents (various versions of this: Berends-Giele, Alpha etc.).

"Classical" example: *n*-gluon amplitudes:

- Start with two on-shell gluons, represented by their polarization vectors, hence the currents associated with them are $J^{\nu}(k) = \varepsilon^{\nu}(k)$.
- Then the two-gluon current reads (no colors) $J^{\mu}(k=k_1+k_2) = \frac{ig_3}{(k_1+k_2)^2} V^{\mu\nu\rho} J_{\nu}(k_1) J_{\rho}(k_2)$.
- From this, larger and larger currents can be built recursively.
- For quarks, the currents are given by spinors, and similar reasoning applies for the construction of the one-particle off-shell currents.
- Treatment of color: Color-ordering the amplitudes $\Rightarrow \mathcal{C}^{(1,\dots,n)} = \operatorname{Tr}[\mathcal{T}^{a_1}\dots\mathcal{T}^{a_n}]$, where \mathcal{T}^a are color matrices in fundamental representation.
- Problem: Need to sum over all allowed permutations.

Parton level simulations

Integration methods: Multi-channeling

Basic idea: Translate Feynman diagrams into channels

 \implies decays, s- and t-channel props as building blocks.

R.Kleiss and R.Pittau, Comput. Phys. Commun. 83 (1994) 141

Integration methods: "Democratic" methods

Rambo/Mambo: Flat & isotropic

R.Kleiss, W.J.Stirling and S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359.

HAAG: Follows QCD antenna pattern

A.van Hameren and C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.

Factorial growth

• ... persists due to the number of color configurations

```
(e.g. (n-1)! permutations for n external gluons).
```

- Solution: Sampling over colors,
 but correlations with phase space
 Best recipe not (yet) found.
- New scheme for color: color dressing

```
(C.Duhr, S.Hoche and F.Maltoni, JHEP 0608 (2006) 062)
```


Limitations of parton level simulation

Factorial growth

Off-shell vs. on-shell recursion relations:

Final State	BG		Bo	F	CSW		
	CO	CD	CO	CD	CO	CD	
2g	0.24	0.28	0.28	0.33	0.31	0.26	
3g	0.45	0.48	0.42	0.51	0.57	0.55	
4g	1.20	1.04	0.84	1.32	1.63	1.75	
5g	3.78	2.69	2.59	7.26	5.95	5.96	
6g	14.2	7.19	11.9	59.1	27.8	30.6	
7g	58.5	23.7	73.6	646	146	195	
8g	276	82.1	597	8690	919	1890	
9g	1450	270	5900	127000	6310	29700	
10g	7960	864	64000	3=3	48900	-	

Time [s] for the evaluation of 10^4 phase space points, sampled over helicities & color.

Limitations of parton level simulation

Efficient phase space integration

- Main problem: Adaptive multi-channel sampling translates "Feynman diagrams" into integration channels
 hence subject to growth.
- But it is practical only for 1000-10000 channels.
- Therefore: Need better sampling procedures
 popen question with little activity.

(Private suspicion: Lack of glamour)

Limitations of parton level simulation

General

- Fixed order parton level (LO, NLO, ...) implies fixed multiplicity
- No control over potentially large logs (appear when two partons come close to each other).
- Parton level is parton level
 experimental definition of observables relies on
 hadrons.

Therefore: Need hadron level event generators!

Standard Model (and beyond) tools @ tree-level

- AlpGen M.L.Mangano et al., JHEP 0307 (2003) 001;
- AMEGIC++ F.K., R.Kuhn, G.Soff, JHEP 0202 (2002) 044;
- CompHEP/CalcHEP E.Boos et al. Nucl. Instrum. Meth. A 534 (2004) 250;
- HELAC A.Kanaki and C.G.Papadopoulos, Comput. Phys. Commun. 132 (2000) 306;
- MadGraph/MadEvent F.Maltoni and T.Stelzer, JHEP 0302, 027 (2003);
- O'Mega+WHIZARD M.Moretti, T.Ohl and J.Reuter, arXiv:hep-ph/0102195.

All tools here are completely self-contained and automated and provide amplitudes and integrators of their own.

Survey of existing parton-level tools

Comparison of tree-level tools

	Models	2 → n	Ampl.	Integ.	public?	lang.
Alpgen	SM	n = 8	rec.	Multi	yes	Fortran
Amegic	SM,MSSM,ADD	n = 6	hel.	Multi	yes	C++
CompHep	SM,MSSM	n=4	trace	1Channel	yes	C
HELAC	SM	n = 8	rec.	Multi	yes	Fortran
MadEvent	SM,MSSM	n = 6	hel.	Multi	yes	Fortran
O'Mega	SM,MSSM,LH	n = 8	rec.	Multi	yes	O'Caml

A short detour to NLO calculations

MC calculations at NLO QCD

Calculate two separate, divergent integrals

$$\sigma_{NLO} = \int_{m+1} d\sigma_R + \int_{m} d\sigma_V$$

- Real emission in $d\sigma_R$, virtual loop in $d\sigma_V$.
- Divergent structures due to soft/collinear particles.
- Combine before numerical integration to cancel divergences (KLN theorem guarantees cancellation).
- Two solutions: Phase space slicing and subtraction.

A short detour to NLO calculations

Illustrative 1-dim example

- $|\mathcal{M}_{m+1}^R|^2 = \frac{1}{x}R(x)$, where x=gluon energy or similar.
- $|\mathcal{M}_m^V|^2 = \frac{1}{\epsilon}V$, regularized in $d = 4 2\epsilon$ dimensions.
- Cross section in d dimensions with jet measure F^J :

$$\sigma = \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_1^J(x) + \frac{1}{\epsilon} F_0^J$$

- Infrared safety of jet measure: $F_1^J(0) = F_0^J$ \implies "A soft/collinear parton has no effect." (Tricky!)
- KLN theorem: R(0) = V.

Phase space slicing

W.T.Giele and E.W.N.Glover, Phys. Rev. D 46 (1992) 1980.

• Introduce arbitrary cutoff $\delta \ll 1$:

$$\sigma = \int_0^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_1^J(x) + \frac{1}{\epsilon} F_0^J + \int_{\delta}^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_1^J(x)$$

$$\approx \int_0^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_0^J + \frac{1}{\epsilon} F_0^J + \int_{\delta}^1 \frac{\mathrm{d}x}{x} R(x) F_1^J(x)$$

$$= \log(\delta) V F_0^J + \int_{\delta}^1 \frac{\mathrm{d}x}{x} R(x) F_1^J(x)$$

 Two separate finite integrals - both numerically large ⇒ error blows up (trial and error for stability)

A short detour to NLO calculations

Subtraction method

S.Catani and M.H.Seymour, Nucl. Phys. B 485 (1997) 291

Rewrite

$$\begin{split} \sigma &= \int\limits_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_1^J(x) - \int\limits_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_0^J + \int\limits_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_0^J + \frac{1}{\epsilon} F_0^J \\ &= \int\limits_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} \left(R(x) F_1^J(x) - V F_0^J \right) + \mathcal{O}(1) F_0^J \,. \end{split}$$

- Two separate finite integrals, with no large numbers to be added/subtracted.
- Subtraction terms are universal (analytical bit can be calculated once and for all).

Summary of lecture 1

- MC as convenient numerical integration method.
- Well-suited to particle physics (integrand with large fluctuations in many dimensions)
- At LO: integrand positive definite ⇒ straight path to simulation/event generation
- Can be fully exclusive direct comparison with data
- But: Parton level not always adequate, need hadron level!
- Subject of next lectures.

